R317. Environmental Quality, Water Quality.

R317-2. Standards of Quality for Waters of the State.

R317-2-1A. Statement of Intent.

Whereas the pollution of the waters of this state constitute a menace to public health and welfare, creates public nuisances, is harmful to wildlife, fish and aquatic life, and impairs domestic, agricultural, industrial, recreational and other legitimate beneficial uses of water, and whereas such pollution is contrary to the best interests of the state and its policy for the conservation of the water resources of the state, it is hereby declared to be the public policy of this state to conserve the waters of the state and to protect, maintain and improve the quality thereof for public water supplies, for the propagation of wildlife, fish and aquatic life, and for domestic, agricultural, industrial, recreational and other legitimate beneficial uses; to provide that no waste be discharged into any waters of the state without first being given the degree of treatment necessary to protect the legitimate beneficial uses of such waters; to provide for the prevention, abatement and control of new or existing water pollution; to place first in priority those control measures directed toward elimination of pollution which creates hazards to the public health; to insure due consideration of financial problems imposed on water polluters through pursuit of these objectives; and to cooperate with other agencies of the state, agencies of other states and the federal government in carrying out these objectives.

R317-2-1B. Authority.

These standards are promulgated pursuant to Sections 19-5-104 and 19-5-110.

R317-2-1C. Triennial Review.

The water quality standards shall be reviewed and updated, if necessary, at least once every three years. The Executive Secretary will seek input through a cooperative process from stakeholders representing state and federal agencies, various interest groups, and the public to develop a preliminary draft of changes. Proposed changes will be presented to the Water Quality Board for information. Informal public meetings may be held to present preliminary proposed changes to the public for comments and suggestions. Final proposed changes will be presented to the Water Quality Board for approval and authorization to initiate formal rulemaking. Public hearings will be held to solicit formal comments from the public. The Executive Secretary will incorporate appropriate changes and return to the Water Quality Board to petition for formal adoption of the proposed changes following the Division of Administrative Rules' rulemaking procedures.

R317-2-2. Scope.

These standards shall apply to all waters of the state and shall be assigned to specific waters through the classification procedures prescribed by Sections 19-5-104(5) and 19-5-110 and

R317-2-3. Antidegradation Policy.

3.1 Maintenance of Water Quality

Waters whose existing quality is better than the established standards for the designated uses will be maintained at high quality unless it is determined by the Board, after appropriate intergovernmental coordination and public participation in concert with the Utah continuing planning process, allowing lower water quality is necessary to accommodate important economic or social development in the area in which the waters are located. However, existing instream water uses shall be maintained and protected. No water quality degradation is allowable which would interfere with or become injurious to existing instream water uses.

In those cases where potential water quality impairment associated with a thermal discharge is involved, the antidegradation policy and implementing method shall be consistent with Section 316 of the Federal Clean Water Act.

3.2 Category ± 3.5 Waters

Waters which have been determined by the Board to be of exceptional recreational or ecological significance or have been determined to be a State or National resource requiring protection, shall be maintained at existing high quality through designation, by the Board after public hearing, as Category \(\frac{1}{2}\) 3.5 Waters. New point source discharges of wastewater, treated or otherwise, are prohibited in such segments after the effective date of designation. Protection of such segments from pathogens in diffuse, underground sources is covered in R317-5 and R317-7 and the Regulations for Individual Wastewater Disposal Systems (R317-501 through R317-515). Other diffuse sources (nonpoint sources) of wastes shall be controlled to the extent feasible through implementation of best management practices or regulatory programs.

Projects such as, but not limited to, construction of dams or roads will be considered <u>Discharges</u> may be allowed where pollution will be temporary and limited after consideration of the factors in R317-2-.3.5.b.4., and where best management practices will be employed to minimize pollution effects.

Waters of the state designated as Category $\frac{1}{2}$ Waters are listed in R317-2-12.1.

3.3 Category 2 3 Waters

Category 2 3 Waters are designated surface water segments which are treated as Category 1 3.5 Waters except that a point source discharge may be permitted provided that the discharge does not degrade existing water quality. Discharges may be allowed where pollution will be temporary and limited after consideration of the factors in R317-2-.3.5.b.4., and where best management practices will be employed to minimize pollution effects. Waters of the state designated as Category 2 3 Waters are listed in R317-2-12.2.

3.4 Category 2 Waters

For all other waters of the state, point source discharges are allowed and degradation may occur, pursuant to the conditions ${\sf var}$

Comment [C1]: #15 on 04202011 2011 List.

Comment [C2]: #1 on 042020112011 List

Comment [C3]: #1 on 042020112011 List

and review procedures outlined in Section 3.5.

3.5 Antidegradation Review (ADR)

An antidegradation review will determine whether the proposed activity complies with the applicable antidegradation requirements for receiving waters that may be affected.

An antidegradation review (ADR) may consist of two parts or levels. A Level I review is conducted to insure that existing uses will be maintained and protected.

Both Level I and Level II reviews will be conducted on a parameter-by-parameter basis. A decision to move to a Level II review for one parameter does not require a Level II review for other parameters. Discussion of parameters of concern is those expected to be affected by the proposed activity.

Antidegradation reviews shall include opportunities for public participation, as described in Section 3.5e.

- a. Activities Subject to Antidegradation Review (ADR)
- 1. For all State waters, antidegradation reviews will be conducted for proposed federally regulated activities, such as those under Clean Water Act Sections 401 (FERC and other Federal actions), 402 (UPDES permits), and 404 (Army Corps of Engineers permits). The Executive Secretary may conduct an ADR on any projects with the potential for major impact on the quality of waters of the state. The review will determine whether the proposed activity complies with the applicable antidegradation requirements for the particular receiving waters that may be affected.
- 2. For Category $\frac{1}{2}$ Waters and Category $\frac{2}{2}$ Waters, reviews shall be consistent with the requirement established in Sections 3.2 and 3.3, respectively.
- 3. For Category $\frac{3\cdot 2}{2}$ Waters, reviews shall be consistent with the requirements established in this section
- b. An Anti-degradation Level II review is not required where any of the following conditions apply:
- 1. Water quality will not be lowered by the proposed activity or for existing permitted facilities, water quality will not be further lowered by the proposed activity, examples include situations where:
- (a) the proposed concentration-based effluent limit is less than or equal to the ambient concentration in the receiving water during critical conditions; or
- (b) a UPDES permit is being renewed and the proposed effluent concentration and loading limits are equal to or less than the concentration and loading limits in the previous permit; or
- (c) a UPDES permit is being renewed and new effluent limits are to be added to the permit, but the new effluent limits are based on maintaining or improving upon effluent concentrations and loads that have been observed, including variability; or
- (d) a new or renewed UPDES permit is being issued, and water quality based effluent limits are not required for a specific pollutant because it has been determined that the discharge will not cause, have reasonable potential to cause, or contribute to an exceedance of a State water quality standard for the pollutant

Comment [C4]: #1 on 042020112011 List

- 2. Assimilative capacity (based upon concentration) is not available or has previously been allocated, as indicated by water quality monitoring or modeling information. This includes situations where:
- (a) the water body is included on the current 303(d) list for the parameter of concern; or
- (b) existing water quality for the parameter of concern does not satisfy applicable numeric or narrative water quality criteria; or
- (c) discharge limits are established in an approved TMDL that is consistent with the current water quality standards for the receiving water (i.e., where TMDLs are established, and changes in effluent limits that are consistent with the existing load allocation would not trigger an antidegradation review).

Under conditions (a) or (b) the effluent limit in an UPDES permit may be equal to the water quality numeric criterion for the parameter of concern.

- 3. Water quality impacts will be temporary and related only to sediment or turbidity and fish spawning will not be impaired,
- 4. The water quality effects of the proposed activity are expected to be temporary and limited. As general guidance, CWA Section 402 general permits, CWA Section 404 nationwide and general permits, or activities of short duration, will be deemed to have a temporary and limited effect on water quality where there is a reasonable factual basis to support such a conclusion. The 404 nationwide permits decision will be made at the time of permit issuance, as part of the Division's water quality certification under CWA Section 401. Where it is determined that the category of activities will result in temporary and limited effects, subsequent individual activities authorized under such permits will not be subject to further antidegradation review. Factors to be considered in determining whether water quality effects will be temporary and limited may include the following:
- (a) Length of time during which water quality will be lowered.
- (b) Percent change in ambient concentrations of pollutants of concern $% \left(1\right) =\left\{ 1\right\} =\left\{ 1$
 - (c) Pollutants affected
- (d) Likelihood for long-term water quality benefits to the segment (e.g., dredging of contaminated sediments)
- (e) Potential for any residual long-term influences on existing uses.
- (f) Impairment of the fish spawning, survival and development of aquatic fauna excluding fish removal efforts.
 - c. Anti-degradation Review Process

For all activities requiring a Level II review, the Division will notify affected agencies and the public with regards to the requested proposed activity and discussions with stakeholders may be held. In the case of Section 402 discharge permits, if it is determined that a discharge will be allowed, the Division of Water Quality will develop any needed UPDES permits for public notice following the normal permit issuance process.

The ADR will cover the following requirements or

determinations:

1. Will all Statutory and regulatory requirements be met?

The Executive Secretary will review to determine that there will be achieved all statutory and regulatory requirements for all new and existing point sources and all required cost-effective and reasonable best management practices for nonpoint source control in the area of the discharge. If point sources exist in the area that have not achieved all statutory and regulatory requirements, the Executive Secretary will consider whether schedules of compliance or other plans have been established when evaluating whether compliance has been assured. Generally, the "area of the discharge" will be determined based on the parameters of concern associated with the proposed activity and the portion of the receiving water that would be affected.

2. Are there any reasonable less-degrading alternatives?

There will be an evaluation of whether there are any reasonable non-degrading or less degrading alternatives for the proposed activity. This question will be addressed by the Division based on information provided by the project proponent. Control alternatives for a proposed activity will be evaluated in an effort to avoid or minimize degradation of the receiving water. Alternatives to be considered, evaluated, and implemented to the extent feasible, could include pollutant trading, water conservation, water recycling and reuse, land application, total containment, etc.

For proposed UPDES permitted discharges, the following list of alternatives should be considered, evaluated and implemented to the extent feasible:

- (a) innovative or alternative treatment options
- (b) more effective treatment options or higher treatment levels $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac$
 - (c) connection to other wastewater treatment facilities
 - (d) process changes or product or raw material substitution
- (e) seasonal or controlled discharge options to minimize discharging during critical water quality periods
 - (f) pollutant trading
 - (g) water conservation
 - (h) water recycle and reuse
- (i) alternative discharge locations or alternative receiving waters
 - (j) land application
 - (k) total containment
- (1) improved operation and maintenance of existing treatment systems
 - (m) other appropriate alternatives

An option more costly than the cheapest alternative may have to be implemented if a substantial benefit to the stream can be realized. Alternatives would generally be considered feasible where costs are no more than 20% higher than the cost of the discharging alternative, and (for POTWs) where the projected per connection service fees are not greater than 1.4% of MAGHI (median adjusted gross household income), the current affordability criterion now being used by the Water Quality Board in the

wastewater revolving loan program. Alternatives within these cost ranges should be carefully considered by the discharger. Where State financing is appropriate, a financial assistance package may be influenced by this evaluation, i.e., a less polluting alternative may receive a more favorable funding arrangement in order to make it a more financially attractive alternative.

order to make it a more financially attractive alternative.

It must also be recognized in relationship to evaluating options that would avoid or reduce discharges to the stream, that in some situations it may be more beneficial to leave the water in the stream for instream flow purposes than to remove the discharge to the stream.

3. Special Procedures for 404 Permits.

For 404 permitted activities, all appropriate alternatives to avoid and minimize degradation should be evaluated. Activities involving a discharge of dredged or fill materials that are considered to have more than minor adverse affects on the aquatic environment are regulated by individual CWA Section 404 permits. The decision-making process relative to the 404 permitting program is contained in the 404(b)(1) guidelines (40 CFR Part 230). Prior to issuing a permit under the 404(b)(1) guidelines, the Corps of Engineers:

- (a) makes a determination that the proposed activity discharges are unavoidable (i.e., necessary):
- (b) examines alternatives to the proposed activity and authorize only the least damaging practicable alternative; and
- (c) requires mitigation for all impacts associated with the activity. A 404(b)(1) finding document is produced as a result of this procedure and is the basis for the permit decision. Public participation is provided for in the process. Because the 404(b)(1) guidelines contains an alternatives analysis, the executive secretary will not require development of a separate alternatives analysis for the anti-degradation review. The division will use the analysis in the 404(b)(1) finding document in completing its anti-degradation review and 401 certification.
- 4. Does the proposed activity have economic and social importance?

Although it is recognized that any activity resulting in a discharge to surface waters will have positive and negative aspects, information must be submitted by the applicant that any discharge or increased discharge will be of economic or social importance in the area.

The factors addressed in such a demonstration may include, but are not limited to, the following:

- (a) employment (i.e., increasing, maintaining, or avoiding a reduction in employment);
 - (b) increased production;
 - (c) improved community tax base;
 - (d) housing;
- (e) correction of an environmental or public health problem; and
- (f) other information that may be necessary to determine the social and economic importance of the proposed surface water discharge.

- 5. The applicant may submit a proposal to mitigate any adverse environmental effects of the proposed activity (e.g., instream habitat improvement, bank stabilization). Such mitigation plans should describe the proposed mitigation measures and the costs of such mitigation. Mitigation plans will not have any effect on effluent limits or conditions included in a permit (except possibly where a previously completed mitigation project has resulted in an improvement in background water quality that affects a water quality-based limit). Such mitigation plans will be developed and implemented by the applicant as a means to further minimize the environmental effects of the proposed activity and to increase its socio-economic importance. An effective mitigation plan may, in some cases, allow the Executive Secretary to authorize proposed activities that would otherwise not be authorized.
- 6. Will water quality standards be violated by the discharge?

Proposed activities that will affect the quality of waters of the state will be allowed only where the proposed activity will not violate water quality standards.

7. Will existing uses be maintained and protected?

Proposed activities can only be allowed if "existing uses" will be maintained and protected. No UPDES permit will be allowed which will permit numeric water quality standards to be exceeded in a receiving water outside the mixing zone. In the case of nonpoint pollution sources, the non-regulatory Section 319 program now in place will address these sources through application of best management practices to ensure that numeric water quality standards are not exceeded.

- 8. If a situation is found where there is an existing use which is a higher use (i.e., more stringent protection requirements) than that current designated use, the Division will apply the water quality standards and anti-degradation policy to protect the existing use. Narrative criteria may be used as a basis to protect existing uses for parameters where numeric criteria have not been adopted. Procedures to change the stream use designation to recognize the existing use as the designated use would be initiated.
 - d. Special Procedures for Drinking Water Sources

An Antidegradation Level II Review will be required by the Executive Secretary for discharges to waters with a Class 1C drinking water use assigned.

Depending upon the locations of the discharge and its proximity to downstream drinking water diversions, additional treatment or more stringent effluent limits or additional monitoring, beyond that which may otherwise be required to meet minimum technology standards or in stream water quality standards, may be required by the Executive Secretary in order to adequately protect public health and the environment. Such additional treatment may include additional disinfection, suspended solids removal to make the disinfection process more effective, removal of any specific contaminants for which drinking water maximum contaminant levels (MCLs) exists, and/or nutrient removal to

reduce the organic content of raw water used as a source for domestic water systems.

Additional monitoring may include analyses for viruses, Giardia, Cryptosporidium, other pathogenic organisms, and/or any contaminant for which drinking water MCLs exist. Depending on the results of such monitoring, more stringent treatment may then be required.

The additional treatment/effluent limits/monitoring which may be required will be determined by the Executive Secretary after consultation with the Division of Drinking Water and the downstream drinking water users.

e. Public Notice

The public will be provided notice and an opportunity to comment on the conclusions of all completed antidegradation reviews. Where possible, public notice on the antidegradation review conclusions will be combined with the public notice on the proposed permitting action. In the case of UPDES permits, public notice will be provided through the normal permitting process, as all draft permits are public noticed for 30 days, and public comment solicited, before being issued as a final permit. The Statement of Basis for the draft UPDES permit will contain information on how the ADR was addressed including results of the Level I and Level II reviews. In the case of Section 404 permits from the Corps of Engineers, the Division of Water Quality will develop any needed 401 Certifications and the public notice will be published in conjunction with the US Corps of Engineers public notice procedures. Other permits requiring a Level II review will receive a separate public notice according to the normal State public notice procedures.

f. Implementation Procedures

The Executive Secretary shall establish reasonable protocols and guidelines (1) for completing technical, social, and economic need demonstrations, (2) for review and determination of adequacy of Level II ADRs and (3) for determination of additional treatment requirements. Protocols and guidelines will consider federal guidance and will include input from local governments, the regulated community, and the general public. The Executive Secretary will inform the Water Quality Board of any protocols or guidelines that are developed.

R317-2-4. Colorado River Salinity Standards.

In addition to quality protection afforded by these regulations to waters of the Colorado River and its tributaries, such waters shall be protected also by requirements of "Proposed Water Quality Standards for Salinity including Numeric Criteria and Plan of Implementation for Salinity Control, Colorado River System, June 1975" and a supplement dated August 26, 1975, entitled "Supplement, including Modifications to Proposed Water Quality Standards for Salinity including Numeric Criteria and Plan of Implementation for Salinity Control, Colorado River System, June 1975", as approved by the seven Colorado River Basin States and the U.S. Environmental Protection Agency, as updated by the 1978 Revision and the 1981, 1984, 1987, 1990, 1993, 1996, 1999,

2002, 2005, and 2008 Reviews of the above documents.

R317-2-5. Mixing Zones.

A mixing zone is a limited portion of a body of water, contiguous to a discharge, where dilution is in progress but has not yet resulted in concentrations which will meet certain standards for all pollutants. At no time, however, shall concentrations within the mixing zone be allowed which are acutely lethal as determined by bioassay or other approved procedure. Mixing zones may be delineated for the purpose of guiding sample collection procedures and to determine permitted effluent limits. The size of the chronic mixing zone in rivers and streams shall not to exceed 2500 feet and the size of an acute mixing zone shall not exceed 50% of stream width nor have a residency time of greater than 15 minutes. Streams with a flow equal to or less than twice the flow of a point source discharge may be considered to be totally mixed. The size of the chronic mixing zone in lakes and reservoirs shall not exceed 200 feet and the size of an acute mixing zone shall not exceed 35 feet. Domestic wastewater effluents discharged to mixing zones shall meet effluent requirements specified in R317-1-3.

- 5.1 Individual Mixing Zones. Individual mixing zones may be further limited or disallowed in consideration of the following factors in the area affected by the discharge:
 - a. Bioaccumulation in fish tissues or wildlife,
- Biologically important areas such spawning/nursery areas or segments with occurrences of federally listed threatened or endangered species,
- c. Potential human exposure to pollutants resulting from drinking water or recreational activities,
- d. Attraction of aquatic life to the effluent plume, where toxicity to the aquatic life is occurring.
 - e. Toxicity of the substance discharged,
- Zone of passage for migrating fish or other species
- (including access to tributaries), or g. Accumulative effects of multiple discharges and mixing zones.

R317-2-6. Use Designations.

The Board as required by Section 19-5-110, shall group the waters of the state into classes so as to protect against controllable pollution the beneficial uses designated within each class as set forth below. Surface waters of the state are hereby classified as shown in R317-2-13.

- 6.1 Class 1 -- Protected for use as a raw water source for domestic water systems.
 - a. Class 1A -- Reserved.b. Class 1B -- Reserved.
- Class 1C -- Protected for domestic purposes with prior treatment by treatment processes as required by the Utah Division of Drinking Water
- Class 2 -- Protected for recreational use aesthetics.

- a. Class 2A -- Protected for frequent primary contact recreation where there is a high likelihood of ingestion of water or a high degree of bodily contact with the water. Examples include, but are not limited to, swimming, rafting, kayaking, diving, and water skiing.
- b. Class 2B -- Protected for infrequent primary contact recreation. Also protected for secondary contact recreation where there is a low likelihood of ingestion of water or a low degree of bodily contact with the water. Examples include, but are not limited to, wading, hunting, and fishing.
 - 6.3 Class 3 -- Protected for use by aquatic wildlife.
- a. Class 3A -- Protected for cold water species of game fish and other cold water aquatic life, including the necessary aquatic organisms in their food chain.
- b. Class 3B -- Protected for warm water species of game fish and other warm water aquatic life, including the necessary aquatic organisms in their food chain.
- c. Class 3C -- Protected for nongame fish and other aquatic life, including the necessary aquatic organisms in their food chain.
- d. Class 3D -- Protected for waterfowl, shore birds and other water-oriented wildlife not included in Classes 3A, 3B, or 3C, including the necessary aquatic organisms in their food chain.
- e. Class 3E -- Severely habitat-limited waters. Narrative standards will be applied to protect these waters for aquatic wildlife.
- $6.4\,$ Class $4\,$ -- Protected for agricultural uses including irrigation of crops and stock watering.
 - 6.5 Class 5 -- The Great Salt Lake.
 - a. Class 5A Gilbert Bay

Geographical Boundary -- All open waters at or below approximately 4,208-foot elevation south of the Union Pacific Causeway, excluding all of the Farmington Bay south of the Antelope Island Causeway and salt evaporation ponds.

Beneficial Uses -- Protected for frequent primary and secondary contact recreation, waterfowl, shore birds and other water-oriented wildlife including their necessary food chain.

b. Class 5B Gunnison Bay

Geographical Boundary -- All open waters at or below approximately 4,208-foot elevation north of the Union Pacific Causeway and west of the Promontory Mountains, excluding salt evaporation ponds.

Beneficial Uses -- Protected for infrequent primary and secondary contact recreation, waterfowl, shore birds and other water-oriented wildlife including their necessary food chain.

c. Class 5C Bear River Bay

Geographical Boundary -- All open waters at or below approximately 4,208-foot elevation north of the Union Pacific Causeway and east of the Promontory Mountains, excluding salt evaporation ponds.

Beneficial Uses -- Protected for infrequent primary and secondary contact recreation, waterfowl, shore birds and other water-oriented wildlife including their necessary food chain.

d. Class 5D Farmington Bay

Geographical Boundary -- All open waters at or below approximately 4,208-foot elevation east of Antelope Island and south of the Antelope Island Causeway, excluding salt evaporation ponds.

Beneficial Uses -- Protected for infrequent primary and secondary contact recreation, waterfowl, shore birds and other water-oriented wildlife including their necessary food chain.

e. Class 5E Transitional Waters along the Shoreline of the Great Salt Lake Geographical Boundary -- All waters below approximately 4,208-foot elevation to the current lake elevation of the open water of the Great Salt Lake receiving their source water from naturally occurring springs and streams, impounded wetlands, or facilities requiring a UPDES permit. The geographical areas of these transitional waters change corresponding to the fluctuation of open water elevation.

Beneficial Uses -- Protected for infrequent primary and secondary contact recreation, waterfowl, shore birds and other water-oriented wildlife including their necessary food chain.

R317-2-7. Water Quality Standards.

7.1 Application of Standards

The numeric criteria listed in R317-2-14 shall apply to each of the classes assigned to waters of the State as specified in R317-2-6. It shall be unlawful and a violation of these regulations for any person to discharge or place any wastes or other substances in such manner as may interfere with designated uses protected by assigned classes or to cause any of the applicable standards to be violated, except as provided in R317-1-3.1. At a minimum, assessment of the beneficial use support for waters of the state will be conducted biennially and available for a 30-day period of public comment and review. Monitoring locations and target indicators of water quality standards shall be prioritized and published yearly. For water quality assessment purposes, up to 10 percent of the representative samples may exceed the minimum or maximum criteria for dissolved oxygen, pH, E. coli, total dissolved solids, and temperature, including situations where such criteria have been adopted on a sitespecific basis. The Board may allow site specific modifications based upon bioassay or other tests performed in accordance with standard procedures determined by the Board. Site-specific criterion may be developed based on bioassay or other tests performed in accordance with standard procedures determined by the Board by rulemaking where natural or un-alterable conditions prevent the attainment of the statewide criterion. Site-specific criteria for total dissolved solids may be adopted by rulemaking where it is demonstrated that: (a) a less stringent criterion is appropriate because of natural or un-alterable conditions; or (b) a less stringent, site-specific criterion and/or date-specified criterion is protective of existing and attainable agricultural uses; or (c) a more stringent criterion is attainable and necessary for the protection of sensitive crops.

7.2 Narrative Standards

Comment [C5]: #11 on the 04202011 2011 List

It shall be unlawful, and a violation of these regulations, for any person to discharge or place any waste or other substance in such a way as will be or may become offensive such as unnatural deposits, floating debris, oil, scum or other nuisances such as color, odor or taste; or cause conditions which produce undesirable aquatic life or which produce objectionable tastes in edible aquatic organisms; or result in concentrations or combinations of substances which produce undesirable physiological responses in desirable resident fish, or other desirable aquatic life, or undesirable human health effects, as determined by bioassay or other tests performed in accordance with standard procedures.

R317-2-8. Protection of Downstream Uses.

All actions to control waste discharges under these regulations shall be modified as necessary to protect downstream designated uses.

R317-2-9. Intermittent Waters.

Failure of a stream to meet water quality standards when stream flow is either unusually high or less than the 7-day, 10-year minimum flow shall not be cause for action against persons discharging wastes which meet both the requirements of R317-1 and the requirements of applicable permits.

R317-2-10. Laboratory and Field Analyses.

10.1 Laboratory Analyses

All laboratory examinations of samples collected to determine compliance with these regulations shall be performed in accordance with standard procedures as approved by the Utah Division of Water Quality by the Utah Office of State Health Laboratory or by a laboratory certified by the Utah Department of Health.

10.2 Field Analyses

All field analyses to determine compliance with these regulations shall be conducted in accordance with standard procedures specified by the Utah Division of Water Quality.

R317-2-11. Public Participation.

Public hearings will be held to review all proposed revisions of water quality standards, designations and classifications, and public meetings may be held for consideration of discharge requirements set to protect water uses under assigned classifications.

R317-2-12. Category $\frac{1}{2}$ and Category $\frac{2}{3}$ Waters.

12.1 Category ± 3.5 Waters.

In addition to assigned use classes, the following surface waters of the State are hereby designated as Category \pm 3.5 Waters:

a. All surface waters geographically located within the outer boundaries of U.S. National Forests whether on public or private lands with the following exceptions:

Category 2 3 Waters as listed in R317-2-12.2.

Weber River, a tributary to the Great Salt Lake, in the Weber River Drainage from Uintah to Mountain Green.

Comment [C6]: #17 on the 04202011 2011 List

- b. Other surface waters, which may include segments within U.S. National Forests as follows:
 - 1. Colorado River Drainage

Calf Creek and tributaries, from confluence with Escalante River to headwaters.

Sand Creek and tributaries, from confluence with Escalante River to headwaters.

 $\mbox{{\tt Mamie}}$ Creek and tributaries, from confluence with Escalante River to headwaters.

Deer Creek and tributaries, from confluence with Boulder Creek to headwaters (Garfield County).

Indian Creek and tributaries, through Newspaper Rock State Park to headwaters.

2. Green River Drainage

Price River (Lower Fish Creek from confluence with White River to Scofield Dam. $\,$

Range Creek and tributaries, from confluence with Green River to headwaters.

Strawberry River and tributaries, from confluence with Red Creek to headwaters.

Ashley Creek and tributaries, from Steinaker diversion to headwaters.

Jones Hole Creek and tributaries, from confluence with $\mbox{\it Green}$ River to headwaters.

Green River, from state line to Flaming Gorge Dam.

Tollivers Creek, from confluence with Green River to headwaters.

Allen Creek, from confluence with Green River to headwaters.

3. Virgin River Drainage

North Fork Virgin River and tributaries, from confluence with East Fork Virgin River to headwaters.

East Fork Virgin River and tributaries from confluence with North Fork Virgin River to headwaters.

4. Kanab Creek Drainage

Kanab Creek and tributaries, from irrigation diversion at confluence with Reservoir Canyon to headwaters.

5. Bear River Drainage

Swan Creek and tributaries, from Bear Lake to headwaters.

North Eden Creek, from Upper North Eden Reservoir to headwaters.

Big Creek and tributaries, from Big Ditch diversion to headwaters.

Woodruff Creek and tributaries, from Woodruff diversion to headwaters.

6. Weber River Drainage

Burch Creek and tributaries, from Harrison Boulevard in Ogden to headwaters.

Hardscrabble Creek and tributaries, from confluence with East Canyon Creek to headwaters.

Chalk Creek and tributaries, from U.S. Highway 189 Main Street in Coalville to headwaters.

Comment [C7]: #16 on 04202011 2011 List

Comment [C8]: #16 on 04202011 2011 List

Weber River and tributaries, from U.S. Highway 189 Utah State Route 32 near Oakley to headwaters.

7. Jordan River Drainage

City Creek and tributaries, from City Creek Water Treatment Plant to headwaters (Salt Lake County).

Emigration Creek and tributaries, from Hogle Zoo to headwaters (Salt Lake County).

Red Butte Creek and tributaries, from Foothill Boulevard in Salt Lake City to headwaters.

Parley's Creek and tributaries, from 13th East in Salt Lake City to headwaters.

Mill Creek and tributaries, from Wasatch Boulevard in Salt Lake City to headwaters.

Big Cottonwood Creek and tributaries, from Wasatch Boulevard in Salt Lake City to headwaters.

Little Willow Creek and tributaries, from diversion to headwaters (Salt Lake County.)

Bell Canyon Creek and tributaries, from Lower Bells Canyon Reservoir to headwaters (Salt Lake County).

South Fork of Dry Creek and tributaries, from Draper Irrigation Company diversion to headwaters (Salt Lake County).

8. Provo River Drainage

Upper Falls drainage above Provo City diversion (Utah County).

Bridal Veil Falls drainage above Provo City diversion (Utah County).

Lost Creek and tributaries, above Provo City diversion (Utah County).

9. Sevier River Drainage

Chicken Creek and tributaries, from diversion at canyon mouth to headwaters.

Pigeon Creek and tributaries, from diversion to headwaters.

East Fork of Sevier River and tributaries, from Kingston diversion to headwaters.

Parowan Creek and tributaries, from Parowan City to headwaters.

Summit Creek and tributaries, from Summit City to headwaters. Braffits Creek and tributaries, from canyon mouth to

Right Hand Creek and tributaries, from confluence with Coal Creek to headwaters.

10. Raft River Drainage

headwaters.

Clear Creek and tributaries, from state line to headwaters (Box Elder County).

Birch Creek (Box Elder County), from state line to headwaters.

Cotton Thomas Creek from confluence with South Junction Creek to headwaters.

11. Western Great Salt Lake Drainage

All streams on the south slope of the Raft River Mountains above 7000' mean sea level.

Donner Creek (Box Elder County), from irrigation diversion to Utah-Nevada state line.

Bettridge Creek (Box Elder County), from irrigation diversion to Utah-Nevada state line.

Clover Creek, from diversion to headwaters.

All surface waters on public land on the Deep Creek Mountains.

12. Farmington Bay Drainage

Holmes Creek and tributaries, from Highway US-89 headwaters (Davis County).

Shepard Creek and tributaries, from Height Bench diversion to headwaters (Davis County).

Farmington Creek and tributaries, from Height Bench Canal diversion to headwaters (Davis County).

Steed Creek and tributaries, from Highway US-89 to headwaters (Davis County).

12.2 Category 2 3 Waters.

In addition to assigned use classes, the following surface waters of the State are hereby designated as Category $\frac{2}{2}$ 3 Waters:

a. Green River Drainage

Deer Creek, a tributary of Huntington Creek, from the forest boundary to 4800 feet upstream.

Electric Lake.

b. Weber River Drainage

Weber River from Uintah to Mountain Green.

Comment [C9]: #17 on the 04202011 2011 List

R317-2-13. Classification of Waters of the State (see R317-2-6).

a. Colorado River Drainage

13.1 Upper Colorado River Basin

TABLE

Paria River and tributaries, from state line to headwaters		2B	3C	4
All tributaries to Lake Powell, except as listed below Tributaries to Escalante River from confluence with Boulder Creek to		2B 3E	3	4
headwaters, including Boulder Creek		2B 3A		4
Dirty Devil River and tributaries, from Lake Powell to Fremont River		2B	3C	4
Deer Creek and tributaries, from confluence with Boulder Creek to headwaters		2B 3A		4
Fremont River and tributaries, from confluence with Muddy Creek to Capitol				
Reef National Park, except as listed below	1C	2B	3C	4

Pleasant Creek and tributaries, from confluence with Fremont Rive to East boundary of Capitol Reef National Park		2B		3C	4
Pleasant Creek and tributaries, from East boundary of Capitol Reef National Park to headwaters	1C	2B 32	Ą		
Fremont River and tributaries, through Capitol Reef National Park to headwaters	1C <mark>2A</mark>	_ 2B :	3A		4
Muddy Creek and tributaries, from confluence with Fremont River to Highway U-10 crossing, except as listed below		2B		3C	4
Quitchupah Creek and Tributaries, from Highway U-10 crossing to headwaters		2B 32	Α		4
Ivie Creek and tributaries, from Highway U-10 to headwaters		2B 3	Α		4
Muddy Creek and tributaries, from Highway U-10 crossing to headwaters	1C	2B 37	Ą		4
San Juan River and Tributaries, from Lake Powell to state line except As listed below:	1C 2A		3B		4
Johnson Creek and tributaries, from confluence with Recapture Creek to headwaters	1C	2B 32	A		4
Verdure Creek and tributaries, from Highway US-191 crossing to headwaters		2B 37	A		4
North Creek and tributaries, from confluence with Montezuma Creek to headwaters	1C	2B 3	Α		4

Comment [C10]: #5 on the 04202011 2011 List

South Creek and tributaries, from confluence with Montezuma Creek to headwaters	1C	2B	3A			4
Spring Creek and tributaries, from confluence with Vega Creek to headwaters		2B	3A			4
Montezuma Creek and tributaries, from U.S. Highway 191 to headwaters	1C	2B	3A			4
Colorado River and tributaries, from Lake Powell to state line except as listed below	1C 2A			3B		4
Indian Creek and tributaries, through Newspaper Rock State Park to headwaters	1C	2B	3A			4
Kane Canyon Creek and tributaries, from confluence with Colorado River to headwaters		2B			3C	4
Mill Creek and tributaries, from confluence with Colorado River to headwaters	1C	2B	3A			4
Dolores River and tributaries, from confluence with Colorado River to state line		2B			3C	4
Roc Creek and tributaries, from confluence with Dolores River to headwaters		2B	3A			4
LaSal Creek and tributaries, from state line to headwaters		2B	3A			4
Lion Canyon Creek and tributaries, from state line to headwaters		2B	3A			4
Little Dolores River and tributaries, from confluence with Colorado River to state line		2B			3C	4
Bitter Creek and tributaries, from confluence with Colorado River to headwaters		2B			3C	4

b. Green River Drainage

TABLE

Green River and tributaries, from confluence with Colorado River to					
state line except as listed below:	1C 2A	7	3B		4
Thompson Creek and tributaries from Interstate Highway 70 to headwaters		2B		3C	4
San Rafael River and tributaries, from confluence with Green River to confluence with Ferron Creek		2B		3C	4
Ferron Creek and tributaries, from confluence with San					
Rafael River to Millsite Reservoir		2B		3C	4
Ferron Creek and tributaries, from Millsite Reservoir to headwaters Huntington Creek and tributaries, from confluence with Cottonwood Creek to	1C	2B	3A		4
Highway U-10 crossing		2B		3C	4
Huntington Creek and tributaries, from Highway U-10 crossing to headwaters	1C	2B	3A		4
Cottonwood Creek and tributaries, from confluence with Huntington Creek to					
Highway U-57 crossing Cottonwood Creek and		2B		3C	4
tributaries, from Highway U-57 crossing to headwaters	1C	2B	3A		4
Cottonwood Canal, Emery County	1C	2B			3E 4
Price River and tributaries, from confluence with Green River to Carbon Canal Diversion at Price City Golf Course		2B		3C	4
Except as listed below Grassy Trail Creek and tributaries, from Grassy					

1C	2B	3A			4
Price Water	2B	3A			4
1C	2B	3A			4
	2B	3A			4
1C	2B	3A			4
	2B	3A			4
	2B	3A			4
	2B		3B	3D	4
	2B	3A			4
	2B		3B		4
	2B	3A			4
	2B		3B		4
	Price Water 1C	Price Water 2B 1C 2B 2B 1C 2B 2B 2B 2B 2B 2B 2B 2B 2B 2B	1C 2B 3A 2B 3A 1C 2B 3A	Price Water 2B 3A 1C 2B 3A 1C 2B 3A	Price Water 2B 3A

Uinta River and tributaries From confluence with Duches River to Highway US-40 cros	ne		2B	3B	4
Uinta River and tributaries From Highway US-4- crossing to headwaters	,		2B 3	A	4
Power House Canal from Confluence with Uinta River to headwaters			2B 3	A	4
Whiterocks River and Canal, From Tridell Water Treatment Plant to Headwaters		1C	2B 3	A	4
Duchesne River and tributaries, from Myton Water Treatment Plant intake to headwaters	e	1C	2B 3	A	4
Lake Fork River and tributaries, from confluence with Duchesne River to headwaters	е	1C	2B 3	A	4
Lake Fork Canal from Dry Gulch Canal Diversion to Moon Lake		1C	2B		3E 4
Dry Gulch Canal, from Myton Water Treatment Plant to Lake Fork Canal		1C	2B		3E 4
Ashley Creek and tributaries, from confluence with Green River to Steinaker diversion	е		2B	3B	4
Ashley Creek and tributaries from Steinaker diversion to headwaters	S,	1C	2B 3	A	4
Big Brush Creek and tributaries, from confluence with Green River to Tyzack (Red Fleet) Dam	е		2B	3B	4
Big Brush Creek and tributaries, from Tyzack (Red Fleet) Dam to headwaters	20	1C	2B 3	A	4

	Jones Hole Creek and tributaries, from confluence with Green River to headwaters		2B	3A		
	Diamond Gulch Creek and tributaries, from confluence with Green River to headwaters		2B	3A		4
	Pot Creek and tributaries, from Crouse Reservoir to headwaters		2B	3A		4
Utal	en River and tributaries, from n-Colorado state line to Flaming Gorge except as listed below:	2A		3A		4
	Sears Creek and tributaries, Daggett County		2B	3A		
	Tolivers Creek and tributaries, Daggett County		2B	3A		
	Red Creek and tributaries, from confluence with Green River to state line		2B		3C	4
	Jackson Creek and tributaries, Daggett County		2B	3A		
	Davenport Creek and tributaries, Daggett County		2B	3A		
	Goslin Creek and tributaries, Daggett County		2B	3A		
	Gorge Creek and tributaries, Daggett County		2B	3A		
	Beaver Creek and tributaries, Daggett County		2B	3A		
	O-Wi-Yu-Kuts Creek and tributaries, County		2B	3A		
	outaries to Flaming Gorge ervoir, except as listed below		2B	3A		4
tri	ch Spring Draw and outaries, from Flaming ge Reservoir to headwaters		2B		3C	4

Spring Creek and tributaries, from Flaming Gorge Reservoir to headwaters All Tributaries of Flaming Gorge		2B	3A		
Reservoir from Utah-Wyoming state line to headwaters		2B	3A		4
13.2 Lower Colorado River Basin a. Virgin River Drainage					
TABLE					
Beaver Dam Wash and tributaries, from Motoqua to headwaters		2B	3	В	4
Virgin River and tributaries from state line to Quail Creek diversion except as listed below		2B	3	В	4
Santa Clara River from confluence with Virgin River to Gunlock Reservoir	1C	2B	3	В	4
Santa Clara River and tributaries, from Gunlock Reservoir to headwaters		2B	3A		4
Leed's Creek, from confluence with Quail Creek to headwaters		2B	3A		4
Quail Creek from Quail Creek Reservoir to headwaters	1C	2B	3A		4
Ash Creek and tributaries, from confluence with Virgin River to Ash Creek Reservoir		2B	3A		4
Ash Creek and tributaries, From Ash Creek Reservoir to headwaters		2B	3A		4
Virgin River and tributaries, from the Quail Creek diversion to headwaters, except as listed	1.0	0.D		2.0	4
below	1C	2B		3C	4
North Fork Virgin River and tributaries	1C 2A		3A		4
East Fork Virgin River, from town of Glendale to headwaters		2B	3A		4

Kolob Creek, from confluence with Virgin River to headwaters	2B 3A	4
b. Kanab Creek Drainage TABLE		
Kanab Creek and tributaries, from state line to irrigation diversion at confluence with Reservoir Canyon	2B 3C	4
Kanab Creek and tributaries, from irrigation diversion at confluence with Reservoir Canyon to headwaters	2B 3A	4
Johnson Wash and tributaries, from state line to confluence with Skutumpah Canyon	2B 3C	4
Johnson Wash and tributaries, from confluence with Skutumpah Canyon to headwaters	2B 3A	4
13.3 Bear River Basin a. Bear River Drainage		
TABLE		
Bear River and tributaries, from Great Salt Lake to Utah-Idaho border, except as listed below:	2B 3B 3D	4
Perry Canyon Creek from U.S. Forest boundary to headwaters	2B 3A	4
Box Elder Creek from confluence with Black Slough to Brigham City Reservoir (the Mayor's Pond)	2B 3C	4
Box Elder Creek, from Brigham City Reservoir (the Mayor's Pond) to headwaters	2B 3A	4
Salt Creek, from confluence with Bear River to Crystal Hot Springs	2B 3B 3D	
Malad River and tributaries, from confluence with Bear River to state line	2B 3C	

Little Bear River and tributaries, from Cutler Reservoir to headwaters		2B	3A		3D	4
Logan River and tributaries, from Cutler Reservoir to headwaters		2B	3A		3D	4
Blacksmith Fork and tributaries, from confluence with Logan River to headwaters		2B	3A			4
Newton Creek and tributaries, from Cutler Reservoir to Newton Reservoir		2B	3A			4
Clarkston Creek and tributaries, from Newton Reservoir to headwaters		2B	3A			4
Birch Creek and tributaries, from confluence with Clarkston Creek to headwaters		2B	3A			4
Summit Creek and tributaries, from confluence with Bear River to headwaters		2B	3A			4
Cub River and tributaries, from confluence with Bear River to state line, except as listed below:		2B		3B		4
High Creek and tributaries, from confluence with Cub River to headwaters		2B	3A			4
All tributaries to Bear Lake from Bear Lake to headwaters, except as listed below		2B	3A			4
Swan Springs tributary to Swan Creek	1C	2B	3A			
Bear River and tributaries in Rich County		2B	3A			4
Bear River and tributaries, from Utah-Wyoming state line to headwaters (Summit County)		2B	3A			4

state line to headwaters (Summit County)		2B 3A		4
13.4 Weber River Basin a. Weber River Drainage				
TABLE				
Willard Creek, from Willard Bay Reservoir to headwaters		2B 3A		4
Weber River, from Great Salt Lake to Slaterville diversion, except as listed below:		2B	3C 3D	4
Four Mile Creek from I-15 To headwaters		2B 3A		4
Weber River and tributaries, from Slaterville diversion to Stoddard diversion, except as listed below		2B 3A		4
Ogden River and tributaries, From confluence with Weber River To Pineview Dam, except as listed Below	<u>27</u>	<u>2B</u> 3A		4 Comment [C11]: #17 on the 04202011 2011 List
Wheeler Creek from Confluence with Ogden River to headwaters	1C	2B 3A		4
All tributaries to Pineview Reservoir	1C	2B 3A		4
Strongs Canyon Creek and Tributaries, from U.S. National Forest boundary to headwaters	1C	2B 3A		4
Burch Creek and tributaries, from Harrison Boulevard in Ogden to Headwaters	1C	2B 3A		
Spring Creek and tributaries, From U.S. National Forest Boundary to headwaters	1C	2B 3A		4
Weber River and tributaries, from Stoddard diversion to headwaters	1C	2B 3A		4

13.5 Utah Lake-Jordan River Basin

a. Jordan River Drainage

TABLE

Jordan River, from Farmington Bay to North Temple Street, Salt Lake City		2B	3B *	3D	4	
State Canal, from Farmington Bay to confluence with the Jordan River		2B	3B *	3D	4	
Jordan River, from North Temple Street in Salt Lake City to confluence with Little Cottonwood Creek		2B	3B *		4	
Surplus Canal from Great Salt Lake to the diversion from the Jordan River		2B	3B *	3D	4	
Jordan River from confluence with Little Cottonwood Creek to Narrows Diversion		2B 3 <i>I</i>	Ą		4	
Jordan River, from Narrows Diversion to Utah Lake	1C	2B	3B		4	
City Creek, from Memory Park in Salt Lake City to City Creek Water Treatment Plant		2B 3 <i>I</i>	A			
City Creek, from City Creek Water Treatment Plant to headwaters	1C	2B 3 <i>I</i>	A			
Red Butte Creek and tributaries from Liberty Park pond inlet to Red Butte Reservoir		2B 3 <i>I</i>	<u> </u>		4	Comment [C12]: #4 on the 04202011 2011 List
Red Butte Creek and tributaries, from Red Butte Reservoir to headwaters	1C	2B 3 <i>I</i>	Ą			
Emigration Creek and tributaries, from Foothill Boulevard 1100 East in S Lake City to headwaters	Salt	2B 3 <i>I</i>	7		<u>4</u>	Comment [C13]: #4 on the 04202011 2011 List
Parley's Creek and tributaries, from 1300 East in Salt Lake City to Mountain Dell Reservoir to headwaters	1C	2B 3 <i>I</i>	A			

Parley's Creek and tributaries,

from Mountain Dell Reservoir to headwaters	1C	2B 3A		
Mill Creek (Salt Lake County) from confluence with Jordan River to Interstate Highway 15		2B	3C	4
Mill Creek (Salt Lake County) and tributaries from Interstate Highway 15 to headwaters		2B 3A		4
Big Cottonwood Creek and tributaries, from confluence with Jordan River to Big Cottonwood Water Treatment Plant		2B 3A		4
Big Cottonwood Creek and tributaries, from Big Cottonwood Water Treatment Plant to				
headwaters Deaf Smith Canyon Creek and	1C	2B 3A		
tributaries	1C	2B 3A		4
Little Cottonwood Creek and tributaries, from confluence with Jordan River to Metropolitan Water Treatment Plant		2B 3A		4
Little Cottonwood Creek and tributaries, from Metropolitan Water Treatment Plant to headwaters	1C	2B 3A		
Bell Canyon Creek and tributaries, from lower Bell's Canyon reservoir to headwaters	1C	2B 3A		
Little Willow Creek and tributaries, from Draper Irrigation Company diversion to headwaters Big Willow Creek and tributaries, from Draper Irrigation Company diversion to headwaters	1C 1C	2B 3A		
South Fork of Dry Creek and	10	ZB JA		
tributaries, from Draper				
Irrigation Company diversion to headwaters All permanent streams on east slope of Oquirrh Mountains (Coon, Barney's, Bingham, Butterfield,	1C	2B 3A		

and Rose Creeks)		2B	3D	4
Kersey Creek from confluence of C-7 Ditch to headwaters		2B	3D	
* Site specific criteria for dissolved	oxygen	. See T	able 2.14	.5.
b. Provo River Drainage				
TABLE				
Provo River and tributaries, from Utah Lake to Murdock diversion Provo River and tributaries, from Murdock Diversion to		2B 3A		4
headwaters, except as listed below	1C	2B 3A		4
Upper Falls drainage above Provo City diversion	1C	2B 3A		
Bridal Veil Falls drainage above Provo City diversion	1C	2B 3A		
Lost Creek and tributaries above Provo City diversion	1C	2B 3A		
c. Utah Lake Drainage				
TABLE				
Dry Creek and tributaries (above Alpine), from U.S. National Forest boundary to headwaters		2B 3A		4
American Fork Creek and tributaries, from diversion at mouth of American Fork Canyon to headwaters		2B 3A		4
Spring Creek and tributaries, from Utah Lake near Lehi to headwaters		2B 3A		4
Lindon Hollow Creek and tributaries, from Utah Lake to headwaters		2B 3:	В	4
Rock Canyon Creek and tributaries (East of Provo) from U.S. National Forest boundary to headwaters	1C	2B 3A		4
Mill Race (except from Interstate 28				

Highway 15 to the Provo City WWTP discharge) and tributaries from Utah Lake to headwaters	2B	3B			4
Mill Race from Interstate Highway 15 to the Provo City wastewater treatment plant discharge	2B	3B			4
Spring Creek and tributaries from Utah Lake (Provo Bay) to 50 feet upstream from the east boundary of the Industrial Parkway Road Right-of-way	2B	3B			4
Tributary to Spring Creek (Utah County) which receives the Springville City WWTP effluent from confluence with Spring Creek to headwaters	2B		3D		4
Spring Creek and tributaries from 50 feet upstream from the east boundary of the Industrial Parkway Road right-of-way to the headwaters	2B 3A	Δ.			4
Ironton Canal from Utah Lake (Provo Bay) to the east boundary of the Denver and Rio Grande Western Railroad right-of-way	2B	30	!		4
Ironton Canal from the east boundary of the Denver and Rio Grande Western Railroad right-of-way to the point of diversion from Spring Creek	2B 3A	<u>.</u>			4
Hobble Creek and tributaries, from Utah Lake to headwaters Dry Creek and tributaries from Utah Lake (Provo Bay) to	2B 3A	Δ			4
Highway-US 89 Dry Creek and tributaries from Highway-US 89 to headwaters	2B 2B 3A			3E	4
Spanish Fork River and tributaries, from Utah Lake to diversion at Moark Junction	2B	3B	3D		4
Spanish Fork River and tributaries, from diversion at Moark Junction to headwaters	2B 3A	7			4

Benjamin Slough and tributaries from Utah Lake to headwaters, except as listed below	2В	3B		4
Beer Creek (Utah County) from 4850 West (in NE1/4NE1/4 sec. 36, T.8 S., R.1 E.) to headwaters	2B		3C	4
Salt Creek, from Nephi diversion to headwaters	2B	3A		4
Currant Creek, from mouth of Goshen Canyon to Mona Reservoir Burriston Creek, from Mona Reservoir to headwaters		3A 3A		4
Peteetneet Creek and tributaries, from irrigation diversion above Maple Dell to headwaters	2B	3A		4
Summit Creek and tributaries (above Santaquin), from U.S. National Forest boundary to headwaters	2B	3A		4
All other permanent streams entering Utah Lake	2B	3B		4
13.6 Sevier River Basin a. Sevier River Drainage				
TABLE				
Sevier River and tributaries from Sevier Lake to Gunnison Bend Reservoir to U.S.National Forest boundary except				
as listed below	2B		3C	4
Beaver River and tributaries from Minersville City to headwater	s 2B	3A		4
Little Creek and tributaries, From irrigation diversion to Headwaters	2B	3A		4
Pinto Creek and tributaries, From Newcastle Reservoir to Headwaters	2B	3A		4

Coal Creek and tributaries	2B 3A	4
Summit Creek and tributaries	2B 3A	4
Parowan Creek and tributaries	2B 3A	4
Tributaries to Sevier River from Sevier Lake to Gunnison Bend Reservoir from U.S. National Forest boundary to headwaters, including: Pioneer Creek and tributaries, Millard County	2B 3A 2B 3A	4
Chalk Creek and tributaries, Millard County	2B 3A	4
Meadow Creek and tributaries, Millard County	2B 3A	4
Corn Creek and tributaries, Millard County	2B 3A	4
Sevier River and tributaries below U.S. National Forest boundary from Gunnison Bend Reservoir to Annabella Diversion except except as listed below	2B 3B	4
Oak Creek and tributaries, Millard County	2B 3A	4
Round Valley Creek and tributaries, Millard County	2B 3A	4
Judd Creek and tributaries, Juab County	2B 3A	4
Meadow Creek and tributaries, Juab County	2B 3A	4
Cherry Creek and tributaries Juab County	2B 3A	4
Tanner Creek and tributaries, Juab County	2B	3E 4
Baker Hot Springs, Juab County	2B	3D 4
Chicken Creek and tributaries, Juab County	2B 3A	4

San Pitch River and tributaries, from confluence with Sevier River to Highway U-132 crossing except As listed below:	28	3C 3D 4
Twelve Mile Creek (South Creek) and tributaries, from U.S. Forest Service boundary to headwaters	2B 3A	4
Six Mile Creek and tributaries, Sanpete County	2B 3A	4
Manti Creek (South Creek) and tributaries, from U.S. Forest Service boundary to headwaters	2B 3A	4
Ephraim Creek (Cottonwood Creek) and tributaries, from U.S. Forest Service to headwaters	2B 3A	4
Oak Creek and tributaries, from U.S. Forest Service boundary near Spring City to headwaters	2B 3A	4
Fountain Green Creek and tributaries, from U.S. Forest Service boundary to headwaters	2B 3A	4
San Pitch River and tributaries, from Highway U-132 crossing to headwaters	2B 3A	4
Tributaries to Sevier River from Gunnison Bend Reservoir to Annabelle Diversion from U.S. National Forest boundary to headwaters	2B 3A	4
Sevier River and tributaries, from Annabella diversion to		_
headwaters Monroe Creek and tributaries,	2B 3A	4
from diversion to headwaters	2B 3A	4
Little Creek and tributaries, from irrigation diversion to		

headwaters	2E	3 A		4
Pinto Creek and tributaries, from Newcastle Reservoir to headwaters	2E	3 3A		4
Coal Creek and tributaries	2E	3 3A		4
Summit Creek and tributaries	2E	3 3A		4
Parowan Creek and tributaries	2E	3 A		4
Duck Creek and tributaries	1C 2E	3 A		4
13.7 Great Salt Lake Basin a. Western Great Salt Lake Drainag	ge			
TABLE				
Grouse Creek and tributaries, Box Elder County	2E	3 3A		4
Muddy Creek and tributaries, Box Elder County	2E	3 3 A		4
Dove Creek and tributaries, Box Elder County	2E	3 3 A		4
Pine Creek and tributaries, Box Elder County	2E	3 3A		4
Rock Creek and tributaries, Box Elder County	2E	3 3A		4
Fisher Creek and tributaries, Box Elder County	2E	3 3A		4
Dunn Creek and tributaries, Box Elder County	2E	3 3A		4
Indian Creek and tributaries, Box Elder County	2E	3 3A		4
Tenmile Creek and tributaries, Box Elder County	2E	3 3A		4
Curlew (Deep) Creek, Box Elder County	2F	3 3A		4
Blue Creek and tributaries, from Great Salt Lake to Blue Creek Reservoir	2E	3	3D	4

Blue Creek and tributaries, from Blue Creek Reservoir to headwaters		2B		3B	4
All perennial streams on the east slope of the Pilot Mountain Range	1C	2B	3A		4
Donner Creek and tributaries, from irrigation diversion to Utah-Nevada state line		2B	3A		4
Bettridge Creek and tributaries, from irrigation diversion to Utah-Nevada state line		2B	3A		4
North Willow Creek and tributaries, Tooele County		2B	3A		4
South Willow Creek and tributaries, Tooele County		2B	3A		4
Hickman Creek and tributaries, Tooele County		2B	3A		4
Barlow Creek and tributaries, Tooele County		2B	3A		4
Clover Creek and tributaries, Tooele County		2B	3A		4
Faust Creek and tributaries, Tooele County		2B	3A		4
Vernon Creek and tributaries, Tooele County		2B	3A		4
Ophir Creek and tributaries, Tooele County		2B	3A		4
Soldier Creek and Tributaries from the Drinking Water Treatment Facility Headwaters, Tooele County	1C	2B	3A		4
Settlement Canyon Creek and tributaries, Tooele County		2B	3A		4
Middle Canyon Creek and tributaries, Tooele County		2B	3A		4
Tank Wash and tributaries, Tooele County		2B	3A		4

Basin Creek and tributaries,						
Juab and Tooele Counties	21	3 A				4
Thomas Creek and tributaries, Juab County	21	3 3A				4
Indian Farm Creek and tributaries, Juab County	21	3 3A				4
Cottonwood Creek and tributaries, Juab County	21	3 3A				4
Red Cedar Creek and tributaries, Juab County	21	3 3A				4
Granite Creek and tributaries, Juab County	21	3 3A				4
Trout Creek and tributaries, Juab County	21	3 3A				4
Birch Creek and tributaries, Juab County	21	3 3A				4
Deep Creek and tributaries, from Rock Spring Creek to headwaters, Juab and Tooele Counties	21	3 3A				4
Cold Spring, Juab County	21	3		3C	3D	
Cane Spring, Juab County	21	3		3C	3D	
Lake Creek, from Garrison (Pruess) Reservoir to Nevada state line	2)	3 A				4
Snake Creek and tributaries, Millard County	21	3	3B			4
Salt Marsh Spring Complex, Millard County	21	3 A				
Twin Springs, Millard County	21	3	3B			
Tule Spring, Millard County	21	3		3C	3D	
Coyote Spring Complex, Millard County	21	3		3C	3D	
Hamblin Valley Wash and tributaries, from Nevada state line to headwaters (Beaver and	35					

Iron Counties)		2B	3D 4
Indian Creek and tributaries, Beaver County, from Indian Creek Reservoir to headwaters		2B 3A	4
Shoal Creek and tributaries, Iron County		2B 3A	4
b. Farmington Bay Drainage			
TABLE			
Corbett Creek and tributaries, from Highway to headwaters		2B 3A	4
Kays Creek and tributaries, from Farmington Bay to U.S. National Forest boundary		2B 3B	4
North Fork Kays Creek and tributaries, from U.S. National Forest boundary to headwaters		2B 3A	4
Middle Fork Kays Creek and tributaries, from U.S. National Forest boundary to headwaters	1C	2B 3A	4
South Fork Kays Creek and tributaries, from U.S. National Forest boundary to headwaters	1C	2B 3A	4
Snow Creek and tributaries		2B 3C	2 4
Holmes Creek and tributaries, from Farmington Bay to U.S. National Forest boundary		2B 3B	4
Holmes Creek and tributaries, from U.S. National Forest boundary to headwaters	1C	2B 3A	4
Baer Creek and tributaries, from Farmington Bay to Interstate Highway 15		2B 30	C 4
Baer Creek and tributaries, from Interstate Highway 15 to Highway US-89		2B 3B	4
Baer Creek and tributaries, from Highway US-89 to headwaters	1C	2B 3A	4

Shepard Creek and tributaries, from U.S. National Forest boundary to headwaters	1C	2B	3A		4
Farmington Creek and tributaries, from Farmington Bay Waterfowl Management Area to U.S. National Forest boundary		2B		3B	4
Farmington Creek and tributaries, from U.S. National Forest boundary to headwaters	1C	2B	3A		4
Rudd Creek and tributaries, from Davis aqueduct to headwaters		2B	3A		4
Steed Creek and tributaries, from U.S. National Forest boundary to headwaters	1C	2B	3A		4
Davis Creek and tributaries, from Highway US-89 to headwaters		2B	3A		4
Lone Pine Creek and tributaries, from Highway US-89 to headwaters Ricks Creek and tributaries, from Highway I-15 to headwaters	1C		3A 3A		4
Barnard Creek and tributaries, from Highway US-89 to headwaters Parrish Creek and tributaries, from Davis Aqueduct to headwaters			3A 3A		4
Deuel Creek and tributaries, (Cente Canyon) from Davis Aqueduct to headwaters	erville	2B	3A		4
Stone Creek and tributaries, from Farmington Bay Waterfowl Management Area to U.S. National Forest boundary		2B	3A		4
Stone Creek and tributaries, from U.S. National Forest boundary to headwaters	1C	2B	3A		4
Barton Creek and tributaries, from U.S. National Forest boundary to headwaters		2B	3A		4
Mill Creek (Davis County) and tributaries, from confluence with State Canal to U.S.					

National Forest boundary		2B	3B	4
Mill Creek (Davis County) and tributaries, from U.S. National Forest boundary to headwaters	1C	2B 3 <i>P</i>	7	4
North Canyon Creek and tributaries, from U.S. National Forest boundary to headwaters		2B 3 <i>P</i>	Δ	4
Howard Slough		2B	3C	4
Hooper Slough		2B	3C	4
Willard Slough		2B	3C	4
Willard Creek to Headwaters	1C	2B 3A	Δ	4
Chicken Creek to Headwaters	1C	2B 3A	Δ	4
Cold Water Creek to Headwaters	1C	2B 3A	A	4
One House Creek to Headwaters	1C	2B 3A	A	4
Garner Creek to Headwaters	1C	2B 3A	Δ	4
13.8 Snake River Basin a. Raft River Drainage (Box Elder	Count	zy)		
	Count	Σy)		
a. Raft River Drainage (Box Elder	Count	2y) 2B 3 <i>P</i>	7	4
a. Raft River Drainage (Box Elder	Count			4
a. Raft River Drainage (Box Elder TABLE Raft River and tributaries Clear Creek and tributaries, from Utah-Idaho state line to	Count	2B 3 <i>P</i>	Δ	_
a. Raft River Drainage (Box Elder TABLE Raft River and tributaries Clear Creek and tributaries, from Utah-Idaho state line to headwaters Onemile Creek and tributaries, from Utah-Idaho state line to	Count	2B 3 <i>P</i>	A.	4
a. Raft River Drainage (Box Elder TABLE Raft River and tributaries Clear Creek and tributaries, from Utah-Idaho state line to headwaters Onemile Creek and tributaries, from Utah-Idaho state line to headwaters George Creek and tributaries, from Utah-Idaho state line to headwaters	Count	2B 3A 2B 3A	A A	4

Pole Creek and tributaries, from state line to headwaters	2B 3A	4
Goose Creek and tributaries	2B 3A	4
Hardesty Creek and tributaries, from state line to headwaters	2B 3A	4
Meadow Creek and tributaries, from state line to headwaters	2B 3A	4
13.9 All irrigation canals and ditches	statewide, except	as

- otherwise designated: 2B, 3E, 4

 13.10 All drainage canals and ditches statewide, except as otherwise designated: 2B, 3E

 13.11 National Wildlife Refuges and State

 Waterfowl Management Areas, and other Areas Associated with the Great Salt Lake

TABLE

Bear River National Wildlife Refuge, Box Elder County	2B	3B	3D	
Bear River Bay Open Water below approximately 4,208 ft. Transitional Waters approximately 4,208 ft. to Open Water Open Water above approximately 4,208 ft.	2B	3B	3D	5C 5E
Brown's Park Waterfowl Management Area, Daggett County	2B 3A		3D	
Clear Lake Waterfowl Management Area, Millard County	2B	3C	3D	
Desert Lake Waterfowl Management Area, Emery County	2B	3C	3D	
Farmington Bay Waterfowl Management Area, Davis and Salt Lake Counties	2B	3C	3D	
Farmington Bay Open Water below approximately 4,208 ft. Transitional Waters approximately 4,208 ft. to Open Water Open Water above approximately				5D 5E
4,208 ft.	2B	3B	3D	

Fish Springs National Wildlife Refuge, Juab County	2B	3C	3D	
Harold Crane Waterfowl Management Area, Box Elder County	2B	3C	3D	
Open Water below approximately 4,208 ft. Transitional Waters approximately 4,208 ft. to Open Water Open Water above approximately 4,208 ft.	2B	3B	3D	5A 5E
Gunnison Bay Open Water below approximately 4,208 ft. Transitional Waters approximately 4,208 ft. to Open Water Open Water above approximately 4,208 ft.	2B	3B	3D	5B 5E
Howard Slough Waterfowl Management Area, Weber County	2B	3C	3D	
Locomotive Springs Waterfowl Management Area, Box Elder County	2B	3B	3D	
Ogden Bay Waterfowl Management Area, Weber County	2B	3C	3D	
Ouray National Wildlife Refuge, Uintah County	2B	3B	3D	
Powell Slough Waterfowl Management Area, Utah County	2B	3C	3D	
Public Shooting Grounds Waterfowl Management Area, Box Elder County	2B	3C	3D	
Salt Creek Waterfowl Management Area, Box Elder County	2B	3C	3D	
Stewart Lake Waterfowl Management Area, Uintah County	2B	3B	3D	
Timpie Springs Waterfowl Management Area, Tooele County	2B	3B	3D	

13.12 Lakes and Reservoirs. All lakes and any reservoirs greater than 10 acres not listed in 13.12 are assigned by default to the classification of the stream with which they are \$40>

associated.

a. Beaver County

	TABLE							
Anderson Meadow Reservoir			2B	3A			4	
Manderfield Reservoir			2B	3A			4	
LaBaron Reservoir			2B	3A			4	
Kent's Lake			2B	3A			4	
Minersville Reservoir			2B	3A		3D	4	
Puffer Lake			2B	3A				
Three Creeks Reservoir			2B	3A			4	
b. Box Elder County								
	TABLE							
Cutler Reservoir (including portion in Cache County)			2B	3	3B	3D	4	
Etna Reservoir			2B	3A			4	
Lynn Reservoir			2B	3A			4	
Mantua Reservoir			2B	3A			4	
Willard Bay Reservoir		1C 2A	2B	. 3	3B	3D	4	
c. Cache County								
	TABLE							
Hyrum Reservoir		2A	A <mark>2B</mark>	3A**	Ł		_ 4	Comment [C14]: #19 on the 04202011 2011 List
Newton Reservoir			2B	3A			4	
Porcupine Reservoir			2B	3A			4	
Pelican Pond			2B	3	3B		4	
Tony Grove Lake			2B	3A			4	
d. Carbon County								
	TABLE							
Grassy Trail Creek Reservoir	41	1C	2B	3A			4	

Olsen Pond			2B		3B	4
Scofield Reservoir		1C	2B	3A		4
e. Daggett County						
	TABLE					
Browne Reservoir			2B	3A		4
Daggett Lake			2B	3A		4
Flaming Gorge Reservoir (Utah portion)		1C 2A	2B	3A		4
Long Park Reservoir		1C	2B	3A		4
Sheep Creek Reservoir			2B	3A		4
Spirit Lake			2B	3A		4
Upper Potter Lake			2B	3A		4
f. Davis County						
	TABLE					
Farmington Ponds			2B	3A		4
Kaysville Highway Ponds			2B	3A		4
Holmes Creek Reservoir			2B		3B	4
g. Duchesne County						
	TABLE					
Allred Lake			2B	3A		4
Atwine Lake			2B	3A		4
Atwood Lake			2B	3A		4
Betsy Lake			2B	3A		4
Big Sandwash Reservoir		1C	2B	3A		4
Bluebell Lake			2B	3A		4
Brown Duck Reservoir			2B	3A		4
Butterfly Lake	4.0		2B	3A		4

Cedarview Reservoir	2B 3A	4
Chain Lake #1	2B 3A	4
Chepeta Lake	2B 3A	4
Clements Reservoir	2B 3A	4
Cleveland Lake	2B 3A	4
Cliff Lake	2B 3A	4
Continent Lake	2B 3A	4
Crater Lake	2B 3A	4
Crescent Lake	2B 3A	4
Daynes Lake	2B 3A	4
Dean Lake	2B 3A	4
Doll Lake	2B 3A	4
Drift Lake	2B 3A	4
Elbow Lake	2B 3A	4
Farmer's Lake	2B 3A	4
Fern Lake	2B 3A	4
Fish Hatchery Lake	2B 3A	4
Five Point Reservoir	2B 3A	4
Fox Lake Reservoir	2B 3A	4
Governor's Lake	2B 3A	4
Granddaddy Lake	2B 3A	4
Hoover Lake	2B 3A	4
Island Lake	2B 3A	4
Jean Lake	2B 3A	4
Jordan Lake	2B 3A	4
Kidney Lake	2B 3A	4

Kidney Lake West	2B 3A	4
Lily Lake	2B 3A	4
Midview Reservoir (Lake Boreham)) 2B 3B	4
Milk Reservoir	2B 3A	4
Mirror Lake	2B 3A	4
Mohawk Lake	2B 3A	4
Moon Lake	1C 2A <mark>2B</mark> 3A	4
North Star Lake	2B 3A	4
Palisade Lake	2B 3A	4
Pine Island Lake	2B 3A	4
Pinto Lake	2B 3A	4
Pole Creek Lake	2B 3A	4
Potter's Lake	2B 3A	4
Powell Lake	2B 3A	4
Pyramid Lake	2A <mark>2B</mark> 3A	4
Queant Lake	2B 3A	4
Rainbow Lake	2B 3A	4
Red Creek Reservoir	2B 3A	4
Rudolph Lake	2B 3A	4
Scout Lake	2A <mark>2B</mark> 3A	4
Spider Lake	2B 3A	4
Spirit Lake	2B 3A	4
Starvation Reservoir	1C 2A <mark>2B</mark> 3A	4
Superior Lake	2B 3A	4
Swasey Hole Reservoir	2B 3A	4
Taylor Lake	2B 3A	4
Thompson Lake	2B 3A	4

Timothy Reservoir #1		2B 3.	A	4
Timothy Reservoir #6		2B 3.	A	4
Timothy Reservoir #7		2B 3.	A	4
Twin Pots Reservoir	1C	2B 3.	A	4
Upper Stillwater Reservoir	1C	2B 3.	A	4
X - 24 Lake		2B 3.	A	4
h. Emery County				
TABLE				
Cleveland Reservoir		2B 3.	A	4
Electric Lake		2B 3.	A	4
Huntington Reservoir		2B 3.	A	4
Huntington North Reservoir	27	A <mark>2B</mark>	3B	4
Joe's Valley Reservoir	27	A <mark>2B</mark> 32	A	4
Millsite Reservoir	1C 2F	A <mark>2B</mark> 32	A	4
' ~ 6' 11 ~ .				
i. Garfield County				
1. Garfield County TABLE				
-		2B 3.	A	4
TABLE		2B 3.		4
TABLE Barney Lake			A	
TABLE Barney Lake Cyclone Lake		2B 3	A	4
TABLE Barney Lake Cyclone Lake Deer Lake		2B 3.	A A 3C 3D	4
TABLE Barney Lake Cyclone Lake Deer Lake Jacob's Valley Reservoir		2B 3. 2B 3.	A A 3C 3D A	4 4 4
TABLE Barney Lake Cyclone Lake Deer Lake Jacob's Valley Reservoir Lower Bowns Reservoir		2B 3. 2B 3. 2B 2B 3.	A A 3C 3D A	4 4 4 4
TABLE Barney Lake Cyclone Lake Deer Lake Jacob's Valley Reservoir Lower Bowns Reservoir North Creek Reservoir		2B 3. 2B 3. 2B 3. 2B 3.	A 3C 3D A A	4 4 4 4
TABLE Barney Lake Cyclone Lake Deer Lake Jacob's Valley Reservoir Lower Bowns Reservoir North Creek Reservoir Panguitch Lake		2B 3. 2B 3. 2B 3. 2B 3. 2B 3.	A 3C 3D A A A	4 4 4 4 4

Posey Lake	2B 3A		4
Purple Lake	2B 3A		4
Raft Lake	2B 3A		4
Row Lake #3	2B 3A		4
Row Lake #7	2B 3A		4
Spectacle Reservoir	2B 3A		4
Tropic Reservoir	2B 3A		4
West Deer Lake	2B 3A		4
Wide Hollow Reservoir	2B 3A		4
j. Iron County			
TABLE			
Newcastle Reservoir	2B 3A		4
Red Creek Reservoir	2B 3A		4
Yankee Meadow Reservoir	2B 3A		4
k. Juab County			
TABLE			
Chicken Creek Reservoir	2B	3C 3D	4
Mona Reservoir	2B 3E	3	4
Sevier Bridge (Yuba) Reservoir	2A <mark>2B</mark> 3E	3	4
1. Kane County			
TABLE			
Navajo Lake	2B 3A		4
m. Millard County			
TABLE			
DMAD Reservoir	2B 3E	3	4
Fools Creek Reservoir	2B	3C 3D	4
Garrison Reservoir (Pruess Lake) 46	2B 3E	}	4

		2B	3B		4
TABLE					
	1C 2A	. <mark>2B</mark> 32	A		4
	1C	2B 32	A		4
TABLE					
		2B 32	A		4
		2B 32	A		4
		2B 32	A		4
		2B 32	A		4
		2B 32	A		4
		2B 3	Ą		4
TABLE					
	2A	. <mark>2B</mark> 32	A		4
		2B 3	A		4
		2B 3	A		4
		2B 3	A		4
TABLE					
		2B	3B	3D	4
	1C	2B 32	A		
	1C	2B 3	A		
	1C	2B 32	A		
	TABLE	TABLE TABLE 1C 2A 1C 1C 1C 1C	TABLE 1C 2A 2B 37 1C 2B 37 TABLE TABLE 2B 37 2B 37	TABLE 1C 2A 2B 3A	TABLE 10 2A 2B 3A

r. San Juan County

TABLE

Blanding Reservoir #4		1C	2B	3A		4
Dark Canyon Lake		1C	2B	3A		4
Ken's Lake			2B	3A**		4
Lake Powell (Utah portion)		1C 2A	2B	3	В	4
Lloyd's Lake		1C	2B	3A		4
Monticello Lake			2B	3A		4
Recapture Reservoir			2B	3A		4
s. Sanpete County						
	TABLE					
Duck Fork Reservoir			2B	3A		4
Fairview Lakes		1C	2B	3A		4
Ferron Reservoir			2B	3A		4
Lower Gooseberry Reservoir		1C	2B	3A		4
Gunnison Reservoir			2B		3C	4
Island Lake			2B	3A		4
Miller Flat Reservoir			2B	3A		4
Ninemile Reservoir			2B	3A		4
Palisade Reservoir		2A	2B	3A		4
Rolfson Reservoir			2B		3C	4
Twin Lakes			2B	3A		4
Willow Lake			2B	3A		4
t. Sevier County						
	TABLE					
Annabella Reservoir			2B	3A		4
Big Lake			2B	3A		4
Farnsworth Lake	48		2B	3A		4

Fish Lake	2B 3A	4
Forsythe Reservoir	2B 3A	4
Johnson Valley Reservoir	2B 3A	4
Koosharem Reservoir	2B 3A	4
Lost Creek Reservoir	2B 3A	4
Redmond Lake	2B 3B	4
Rex Reservoir	2B 3A	4
Salina Reservoir	2B 3A	4
Sheep Valley Reservoir	2B 3A	4
u. Summit County		
TABLE		
Abes Lake	2B 3A	4
Alexander Lake	2B 3A	4
Amethyst Lake	2B 3A	4
Beaver Lake	2B 3A	4
Beaver Meadow Reservoir	2B 3A	4
Big Elk Reservoir	2B 3A	4
Blanchard Lake	2B 3A	4
Bridger Lake	2B 3A	4
China Lake	2B 3A	4
Cliff Lake	2B 3A	4
Clyde Lake	2B 3A	4
Coffin Lake	2B 3A	4
Cuberant Lake	2B 3A	4
East Red Castle Lake	2B 3A	4

Echo Reservoir

1C 2A <mark>2B</mark> 3A

Fish Lake	2B 3A	4
Fish Reservoir	2B 3A	4
Haystack Reservoir #1	2B 3A	4
Henry's Fork Reservoir	2B 3A	4
Hoop Lake	2B 3A	4
Island Lake	2B 3A	4
Island Reservoir	2B 3A	4
Jesson Lake	2B 3A	4
Kamas Lake	2B 3A	4
Lily Lake	2B 3A	4
Lost Reservoir	2B 3A	4
Lower Red Castle Lake	2B 3A	4
Lyman Lake	2A <mark>2B</mark> 3A	4
Marsh Lake	2B 3A	4
Marshall Lake	2B 3A	4
McPheters Lake	2B 3A	4
Meadow Reservoir	2B 3A	4
Meeks Cabin Reservoir	2B 3A	4
Notch Mountain Reservoir	2B 3A	4
Red Castle Lake	2B 3A	4
Rockport Reservoir	1C 2A <mark>2B</mark> 3A	4
Ryder Lake	2B 3A	4
Sand Reservoir	2B 3A	4
Scow Lake	2B 3A	4
Smith Moorehouse Reservoir	1C 2B 3A	4
Star Lake	2B 3A	4
Stateline Reservoir	2B 3A	4

Tamarack Lake		2B 3 <i>I</i>	7	4
Trial Lake	1C	2B 3 <i>I</i>	7	4
Upper Lyman Lake		2B 3 <i>P</i>	7	4
Upper Red Castle		2B 3 <i>P</i>	7	4
Wall Lake Reservoir		2B 3 <i>I</i>	7	4
Washington Reservoir		2B 3 <i>P</i>	7	4
Whitney Reservoir		2B 3 <i>P</i>	7	4
v. Tooele County				
TZ	ABLE			
Blue Lake		2B	3B	4
Clear Lake		2B	3B	4
Grantsville Reservoir		2B 3 <i>P</i>	7	4
Horseshoe Lake		2B	3B	4
Kanaka Lake		2B	3B	4
Rush Lake		2B	3B	
Settlement Canyon Reservoir		2B 3 <i>P</i>	7	4
Stansbury Lake		2B	3B	4
Vernon Reservoir		2B 3 <i>P</i>	7	4
w. Uintah County				
TZ	ABLE			
Ashley Twin Lakes (Ashley Creek)	1C	2B 3 <i>P</i>	7	4
Bottle Hollow Reservoir		2B 3 <i>P</i>	7	4
Brough Reservoir		2B 3 <i>P</i>	7	4
Calder Reservoir		2B 3 <i>I</i>	7	4
Crouse Reservoir		2B 3 <i>I</i>	7	4
East Park Reservoir		2B 3 <i>P</i>	7	4

Fish Lake			2B	ЗА		4
Goose Lake #2			2B	3A		4
Matt Warner Reservoir			2B	3A		4
Oaks Park Reservoir			2B	3A		4
Paradise Park Reservoir			2B	3A		4
Pelican Lake			2B		3B	4
Red Fleet Reservoir	1C	2A	<mark>2B</mark>	3A		4
Steinaker Reservoir	1C	2A	<mark>2B</mark>	3A		4
Towave Reservoir			2B	3A		4
Weaver Reservoir			2B	3A		4
Whiterocks Lake			2B	3A		4
Workman Lake			2B	3A		4

x. Utah County

TABLE

Big East Lake	2	2B 3A			4
Salem Pond	2A	3A			4
Silver Flat Lake Reservoir	2	2B 3A			4
Tibble Fork Resevoir	2	2B 3A			4
Utah Lake	2	2B	3B	3D	4
y. Wasatch County					
TABLE					
Currant Creek Reservoir	1C 2	2B 3A			4
Deer Creek Reservoir	1C 2A <mark>2</mark>	3A			4
Jordanelle Reservoir	1C 2A	3A			4
Mill Hollow Reservoir	2	2B 3A			4
Strawberry Reservoir	1C 2	2B 3A			4

z. Washington County

Comment [C15]: #4 on the 04202011 2011 List http://www.waterquality.utah .gov/watersheds/lakes/BIGEAS T.pdf

TABLE

Baker Dam Reservoir	2B 3A	4
Gunlock Reservoir	1C 2A 2B 3B	4
Ivins Reservoir	2B 3B	4
Kolob Reservoir	2B 3A	4
Lower Enterprise Reservoir	2B 3A	4
Quail Creek Reservoir	1C 2A <mark>2B</mark> 3B	4
Sand Hollow Reservoir	1C 2A 3B	4 Comment [C16]: #4 on the 04202011 2011 List
Upper Enterprise Reservoir	2B 3A	4
aa. Wayne County		
TABLE		
Blind Lake	2B 3A	4
Cook Lake	2B 3A	4
Donkey Reservoir	2B 3A	4
Fish Creek Reservoir	2B 3A	4
Mill Meadow Reservoir	2B 3A	4
Raft Lake	2B 3A	4
bb. Weber County		
TABLE		
Causey Reservoir	2B 3A	4
Pineview Reservoir ** Denotes site-specific temperature,	1C 2A <mark>2B</mark> 3A** see Table 2.14.2 Notes	4 Comment [C17]: #19 on the 04202011 2011 List

R317-2-14. Numeric Criteria.

13.13 Unclassified Waters

TABLE 2.14.1 NUMERIC CRITERIA FOR DOMESTIC, RECREATION, AND AGRICULTURAL USES

All waters not specifically classified are presumptively classified: 2B, 3D

Parameter	Domest		Recreation and Aesthetics 2A 2B			Agri- culture 4
BACTERIOLOGICA (30-DAY GEOMET MEAN) (NO.)/10 E. coli	RIC	(7)	126			1
MAXIMUM (NO.)/100 ML) E. coli	(7)	668	409	9 66	8	
PHYSICAL pH (RANGE)		6.5-9.0	6.	5-9.0	6.5-9.	0 6.5-9.0
Turbidity Incr (NTU)	ease		10)	10	
METALS (DISSO	LVED, M	MUMIXA				
MG/L) (2) Arsenic Barium Beryllium		0.01 1.0 <0.004				0.1
Cadmium Chromium Copper		0.01				0.01 0.10 0.2
Lead Mercury Selenium		0.015 0.002 0.05				0.1
Silver		0.05				
INORGANICS (MAXIMUM MG/L) Bromate Boron		0.01				0.75
Chlorite Fluoride (3) Nitrates as N Total Dissolve	ā	<1.0 1.4-2.4 10				
Solids (4)	u	RADIOLO	GTCAT			1200
(MAXIMUM pCi/L Gross Alpha Gross Beta (Combined) Strontium 90 Tritium Uranium)	15 4 mrem/5 5 8 20000			um 226,	15 228
ORGANICS (MAXIMUM UG/L)						
Chlorophenoxy		54				

Herbicides 2,4-D 70 2,4,5-TP 10 Methoxychlor 40

POLLUTION INDICATORS (5)

BOD (MG/L) 5 5 5 Nitrate as N (MG/L) 4 4
Total Phosphorus as P (MG/L) (6) 0.05 0.05

FOOTNOTES:

- (1) Reserved
- (2) The dissolved metals method involves filtration of the sample in the field, acidification of the sample in the field, no digestion process in the laboratory, and analysis by approved laboratory methods for the required detection levels.
- (3) Maximum concentration varies according to the daily maximum mean air temperature.

TEMP (C)	MG/I
12.0	2.4
12.1-14.6	2.2
14.7-17.6	2.0
17.7-21.4	1.8
21.5-26.2	1.6
26.3-32.5	1.4

(4) Site-specific criteria for total dissolved solids may be adopted by rulemaking where it is demonstrated that: (a) a less stringent criterion is appropriate because of natural or un alterable conditions; or (b) a less stringent, site specific criterion and/or date-specified criterion is protective of existing and attainable agricultural uses; or (c) a more stringent criterion is attainable and necessary for the protection of sensitive crops. Reserved

For water quality assessment purposes, up to 10% of representative samples may exceed the standard.

SITE SPECIFIC STANDARDS FOR TOTAL DISSOLVED SOLIDS (TDS)

Castle Creek from confluence with the Colorado River to Seventh Day Adventist Diversion: 1,800 $\mbox{mg}/\mbox{l};$

Cottonwood Creek from the confluence with Huntington Creek to I-57:

3,500 mg/l;

Ferron Creek from the confluence with San Rafael River to Highway 10:

Comment [C18]: #11 on the 04202011 2011 List

3,500 mg/l;

Huntington Creek and tributaries from the confluence with Cottonwood $\,$

Creek to U-10: 4,800 mg/l;

Ivie Creek and its tributaries from the confluence with Muddy Creek

to the confluence with Quitchupah Creek:

3,800 mg/l provided that total sulfate not exceed 2,000 mg/l to protect the livestock watering agricultural existing use;

Ivie Creek and its tributaries from the confluence with Quitchupah Creek to U10: 2,600 mg/l;

Lost Creek from the confluence with Sevier River to U.S. Forest Service Boundary: 4,600 mg/l;

Muddy Creek and tributaries from the confluence with Ivie Creek toU-10: 2,600 mg/l;

Muddy Creek from confluence with Fremont River to confluence with Ivie Creek: 5,800 mg/l;

North Creek from the confluence with Virgin River to headwaters: 2,035 mg/l;

Onion Creek from the confluence with Colorado River to road crossing above Stinking Springs: 3000 mg/l;

Brine Creek-Petersen Creek, from the confluence with the Sevier River to U-119 Crossing: 9,700 mg/l;

Price River and tributaries from confluence with Green River to confluence with Goal Soldier Creek: 3,000 mg/l;

Comment [C19]: #14 on the 04202011 2011 List

Price River and tributaries from the confluence with Coal Creek <u>Soldier Creek</u> to Carbon Canal Diversion:
1,700 mg/l

Quitchupah Creek from the confluence with Ivie Creek to U-10: 3,800 mg/l provided that total sulfate not exceed 2,000 mg/l to protect the livestock watering agricultural existing use;

Rock Canyon Creek from the confluence with Cottonwood Creek to headwaters: 3,500 mg/l;

San Pitch River from below Gunnison Reservoir to the Sevier River: 2,400 $\mbox{mg}/\mbox{1;}$

San Rafael River from the confluence with the Green River to Buckhorn Crossing: 4,100 mg/l;

San Rafael River from the Buckhorn Crossing to the confluence with Huntington Creek and Cottonwood Creek: 3,500 mg/l;

Sevier River between Gunnison Bend Reservoir and DMAD Reservoir: 1,725 mg/l;

Sevier River from Gunnison Bend Reservoir to Clear Lake: 3,370 mg/1;

Virgin River from the Utah/Arizona border to Pah Tempe Springs: 2,360~mg/l

- (5) Investigations should be conducted to develop more information where these pollution indicator levels are exceeded.
- (6) Total Phosphorus as P (mg/1) indicator for lakes and reservoirs shall be 0.025.
- (7) Where the criteria are exceeded and there is a reasonable basis for concluding that the indicator bacteria E. coli are primarily from natural sources (wildlife), e.g., in National Wildlife Refuges and State Waterfowl Management Areas, the criteria

may be considered attained provided the density attributable to non-wildlife sources is less than the criteria. Exceedences of E. coli from nonhuman nonpoint sources will generally be addressed through appropriate Federal, State, and local nonpoint source programs.

Measurement of E. coli using the "Quanti-Tray 2000" procedure is approved as a field analysis. Other EPA approved methods may also be used.

For water quality assessment purposes, up to 10% of representative samples may exceed the 668 per 100 ml criterion (for 1C and 2B waters) and 409 per 100 ml (for 2A waters). For small datasets, where exceedences of these criteria are observed, follow-up ambient monitoring should be conducted to better characterize water quality.

TABLE 2.14.2 NUMERIC CRITERIA FOR AQUATIC WILDLIFE(8)

Parameter Aquatic Wildlife
3A 3B 3C 3D 5

PHYSICAL

Total Dissolved

Gases	(1)	(1)		
Minimum Dissolved Oxy (MG/L) (2)(2a)	/gen			
30 Day Average 7 Day Average	6.5 9.5/5.	5.5 0 6.0/4.	5.0	5.0
Minimum	8.0/4.	0 5.0/3.	0 3.0	3.0
Max. Temperature(C)	3) 20	27	27	
Max. Temperature Change (C)(3)	2	4	4	
pH (Range) (2a)	5.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0
Turbidity Increase (NTU) METALS (4) (DISSOLVED, UG/L)(5)	10	10	15	15
Aluminum 4 Day Average (6) 1 Hour Average	87 750	87 750	87 750	87 750
Arsenic (Trivalent) 4 Day Average 1 Hour Average	150 340	150 340	150 340	150 340
Cadmium (7) 4 Day Average 1 Hour Average	0.25	0.25 2.0	0.25	0.25 2.0
Chromium (Hexavalent) 4 Day Average 1 Hour Average Chromium (Trivalent) (7) 4 Day Average	11 16	11 16	11 16	11 16
1 Hour Average	570	570	570	570
Copper (7) 4 Day Average 1 Hour Average	9 13	9 13	9 13	9 13
Cyanide (Free) 4 Day Average 1 Hour Average Iron (Maximum)	5.2 22 1000	5.2 22 1000	5.2 22 1000	22 1000
Lead (7) 4 Day Average	2.5	2.5 8	2.5	2.5

	1 Hour Average	65	65	65	65		
ı	Mercury 4 Day Average	0.012	0.012	0.012	0.012		
L	1 Hour Average	2.4	2.4	2.4	2.4		Comment [C20]: #10 on the 04202011 2011 List
	Nickel (7) 4 Day Average 1 Hour Average	52 468	52 468	52 468	52 468		
	Selenium 4 Day Average 1 Hour Average	4.6 18.4	4.6 18.4	4.6 18.4	4.6 18.4		
	Selenium (14) Gilbert Bay (Class 5A) Great Salt Lake Geometric Mean over Nesting Season (mg/kg	dry wt)				12.5	
	Nescing Season (mg/kg	ary wc)				12.5	
	Silver 1 Hour Average (7)	1.6	1.6	1.6	1.6		
	<u>Tributyl</u> Tin						Comment [C21]: #8 on the
	4 Day Average	0.072	0.072	0.072	0.072		04202011 2011 List
	1 Hour Average	0.46	0.46	0.46	0.46		
	Zinc (7) 4 Day Average 1 Hour Average	120 120	120 120	120 120	120 120		
	INORGANICS (MG/L) (4) Total Ammonia as N (9) 30 Day Average 1 Hour Average	(9a) (9b)	(9a) (9b)	(9a) (9b)	(9a) (9b)		
	Chlorine (Total Residual) 4 Day Average 1 Hour Average	0.011 0.019	0.011	0.011 0.019	0.011 0.019		
		2.0 0.01 MUM pCi/L	2.0 0.01)	2.0	2.0 0.01		
	Gross Alpha (10)	15	15	15	15		
	ORGANICS (UG/L) (4) Acrolein						Comment [C22]: #8 on the 04202011 2011 List
	4 Day Average	3.0	3.0	3.0	3.0		
		59					

1 Hour Average	3.0	3.0	3.0	3.0
Aldrin 1 Hour Average	1.5	1.5	1.5	1.5
Chlordane 4 Day Average 1 Hour Average	0.0043	0.0043	0.0043	0.0043
<u>Chlorpyrifos</u> 4 Day Average	0.041	0.041	0.041	0.041
1 Hour Average	0.083	0.083	0.083	0.083
4,4' -DDT 4 Day Average 1 Hour Average	0.0010 0.55	0.0010 0.55	0.0010 0.55	0.0010 0.55
Diazinon 4 Day Average 1 Hour Average	0.17 0.17	0.17 0.17	0.17 0.17	0.17 0.17
Dieldrin 4 Day Average 1 Hour Average	0.056 0.24	0.056 0.24	0.056 0.24	0.056 0.24
Alpha-Endosulfan 4 Day Average 1 Hour Average	0.056 0.11	0.056 0.11	0.056 0.11	0.056 0.11
beta-Endosulfan 4 Day Average 1 Day Average	0.056 0.11	0.056 0.11	0.056 0.11	0.056 0.11
Endrin 4 Day Average 1 Hour Average	0.036 0.086	0.036 0.086	0.036 0.086	0.036 0.086
Heptachlor 4 Day Average 1 Hour Average	0.0038 0.26	0.0038 0.26	0.0038 0.26	0.0038 0.26
Heptachlor epoxide 4 Day Average 1 Hour Average	0.0038 0.26	0.0038 0.26	0.0038 0.26	0.0038 0.26
Hexachlorocyclohexane (Lindane) 4 Day Average 1 Hour Average	0.08	0.08	0.08	0.08
Methoxychlor (Maximum) Mirex (Maximum)	0.03 0.001 60	0.03	0.03	0.03 0.001

Comment [C23]: #8 on the 04202011 2011 List

Nonylphenol 4 Day Average 1 Hour Average	6.6 28.0	6.6 28.0	6.6 28.0	6.6 28.0
Parathion 4 Day Average 1 Hour Average	0.013 0.066	0.013 0.066	0.013 0.066	0.013 0.066
PCB's 4 Day Average	0.014	0.014	0.014	0.014
Pentachlorophenol (11) 4 Day Average 1 Hour Average	15 19	15 19	15 19	15 19
Toxaphene 4 Day Average 1 Hour Average	0.0002 0.73	0.0002 0.73	0.0002 0.73	0.0002 0.73
POLLUTION INDICATORS (11) Gross Beta (pCi/L) BOD (MG/L) Nitrate as N (MG/L) Total Phosphorus as P(N	50 5 4 MG/L) (12 0.05	50 5 4)	50 5 4	50 5

FOOTNOTES:

- (1) Not to exceed 110% of saturation.
- (2) These limits are not applicable to lower water levels in deep impoundments. First number in column is for when early life stages are present, second number is for when all other life stages present.
- (2a) These criteria are not applicable to Great Salt Lake impounded wetlands. Surface water in these wetlands shall be protected from changes in pH and dissolved oxygen that create significant adverse impacts to the existing beneficial uses. To ensure protection of uses, the Executive Secretary shall develop reasonable protocols and guidelines that quantify the physical, chemical, and biological integrity of these waters. These protocols and guidelines will include input from local governments, the regulated community, and the general public. The Executive Secretary will inform the Water Quality Board of any protocols or guidelines that are developed.
- (3) The temperature standard shall be at background where it can be shown that natural or un-alterable conditions prevent its attainment. In such cases rulemaking will be undertaken to modify the standard accordingly. Reserved

Site Specific Standards for Temperature

Ken's Lake: From June 1^{st} - September 20^{th} , 27 degrees C.

(4) Where criteria are listed as 4-day average and 1-hour average concentrations, these concentrations should not

Comment [C24]: #11 on the 04202011 2011 List

be exceeded more often than once every three years on the average.

- (5) The dissolved metals method involves filtration of the sample in the field, acidification of the sample in the field, no digestion process in the laboratory, and analysis by EPA approved laboratory methods for the required detection levels.
- (6) The criterion for aluminum will be implemented as follows:

Where the pH is equal to or greater than 7.0 and the hardness is equal to or greater than 50 ppm as CaC03 in the receiving water after mixing, the 87 ug/1 chronic criterion (expressed as total recoverable) will not apply, and aluminum will be regulated based on compliance with the 750 ug/1 acute aluminum criterion (expressed as total recoverable).

- (7) Hardness dependent criteria. 100 mg/l used. Conversion factors for ratio of total recoverable metals to dissolved metals must also be applied. In waters with a hardness greater than 400 mg/l as CaC03, calculations will assume a hardness of 400 mg/l as CaC03. See Table 2.14.3 for complete equations for hardness and conversion factors.
 - (8) Reserved
- (9) The following equations are used to calculate Ammonia criteria concentrations:
- (9a) The thirty-day average concentration of total ammonia nitrogen (in mg/l as N) does not exceed, more than once every three years on the average, the chronic criterion calculated using the following equations.

(9b) The one-hour average concentration of total ammonia nitrogen (in mg/l as N) does not exceed, more than once every three years on the average the acute criterion calculated using the following equations.

Class 3A: mg/l as N (Acute) = $(0.275/(1+10^{7.204-pH})) + (39.0/1+10^{pH-7.204}))$ Class 3B, 3C, 3D: mg/l as N (Acute) = $0.411/(1+10^{7.204-pH})) + (58.4/(1+10^{pH-7.204}))$

In addition, the highest four-day average within the 30-day period should not exceed 2.5 times the chronic criterion. The "Fish Early Life Stages are Present" 30-day average total ammonia criterion will be applied by default unless it is determined by the Division, on a site-specific basis, that it is appropriate to apply the "Fish Early Life Stages are Absent" 30-day average criterion for all or some portion of the year. At a minimum, the "Fish Early Life Stages are Present" criterion will apply from the beginning of spawning through the end of the early life stages. Early life stages

include the pre-hatch embryonic stage, the post-hatch free embryo or yolk-sac fry stage, and the larval stage for the species of fish expected to occur at the site. The division will consult with the Division of Wildlife Resources in making such determinations. The Division will maintain information regarding the waterbodies and time periods where application of the "Early Life Stages are Absent" criterion is determined to be appropriate.

- (10) Investigation should be conducted to develop more information where these levels are exceeded.
- (11) pH dependent criteria. pH 7.8 used in table. See Table 2.14.4 for equation.
- (12) Total Phosphorus as P (mg/1) as a pollution indicator for lakes and reservoirs shall be 0.025.
- (13) Formula to convert dissolved sulfide to un-disassociated hydrogen sulfide is: H_2S = Dissolved Sulfide * $e^{((-1.92 + pH) + 12.05)}$
- (14) The selenium water quality standard of 12.5 (mg/kg dry weight) for Gilbert Bay is a tissue based standard using the complete egg/embryo of aquatic dependent birds using Gilbert Bay based upon a minimum of five samples over the nesting season. Assessment procedures are incorporated as a part of this standard as follows:

Egg Concentration Triggers: DWQ Responses

Below 5.0 mg/kg: Routine monitoring with sufficient intensity to determine if selenium concentrations within the Great Salt Lake ecosystem are increasing.

- 5.0~mg/kg: Increased monitoring to address data gaps, loadings, and areas of uncertainty identified from initial Great Salt Lake selenium studies.
- 6.4 mg/kg: Initiation of a Level II Antidegradation review by the State for all discharge permit renewals or new discharge permits to Great Salt Lake. The Level II Antidegradation review may include an analysis of loading reductions.
- 9.8 mg/kg: Initiation of preliminary TMDL studies to evaluate selenium loading sources.
- 12.5 mg/kg and above: Declare impairment. Formalize and implement TMDL.

Antidegradation

Level II Review procedures associated with this standard are referenced at R317-2-3.5.C.

TABLE
1-HOUR AVERAGE (ACUTE) CONCENTRATION OF
TOTAL AMMONIA AS N (MG/L)

рН	Class 3A	Class 3B, 3C, 3D
6.5	32.6	48.8
6.6	31.3	46.8
6.7	29.8	44.6
6.8	28.1	42.0
6.9	26.2	39.1
7.0	24.1	36.1
7.1	22.0	32.8
7.2	19.7	29.5
7.3	17.5	26.2
7.4	15.4	23.0
7.5	13.3	19.9
7.6	11.4	17.0
7.7	9.65	14.4
7.8	8.11	12.1
7.9	6.77	10.1
8.0	5.62	8.40
8.1	4.64	6.95
8.2	3.83	5.72
8.3	3.15	4.71
8.4	2.59	3.88
8.5	2.14	3.20
8.6	1.77	2.65
8.7	1.47	2.20
8.8	1.23	1.84
8.9	1.04	1.56
9.0	0.89	1.32

TABLE 30-DAY AVERAGE (CHRONIC) CONCENTRATION OF TOTAL AMMONIA AS N (MG/1)

Fish Early Life Stages Present

				Temper	ature,	C				
рН	0	14	16	18	20	22	24	26	28	30
6.5	6.67	6.67	6.06	5.33	4.68	4.12	3.62	3.18	2.80	2.46
6.6	6.57	6.57	5.97	5.25	4.61	4.05	3.56	3.13	2.75	2.42
6.7	6.44	6.44	5.86	5.15	4.52	3.98	3.50	3.07	2.70	2.37
6.8	6.29	6.29	5.72	5.03	4.42	3.89	3.42	3.00	2.64	2.32
6.9	6.12	6.12	5.56	4.89	4.30	3.78	3.32	2.92	2.57	2.25
7.0	5.91	5.91	5.37	4.72	4.15	3.65	3.21	2.82	2.48	2.18
7.1	5.67	5.67	5.15	4.53	3.98	3.50	3.08	2.70	2.38	2.09
7.2	5.39	5.39	4.90	4.31	3.78	3.33	2.92	2.57	2.26	1.99
7.3	5.08	5.08	4.61	4.06	3.57	3.13	2.76	2.42	2.13	1.87
7.4	4.73	4.73	4.30	3.78	3.32	2.92	2.57	2.26	1.98	1.74
7.5	4.36	4.36	3.97	3.49	3.06	2.69	2.37	2.08	1.83	1.61
7.6	3.98	3.98	3.61	3.18	2.79	2.45	2.16	1.90	1.67	1.47
7.7	3.58	3.58	3.25	2.86	2.51	2.21	1.94	1.71	1.50	1.32
7.8	3.18	3.18	2.89	2.54	2.23	1.96	1.73	1.52	1.33	1.17
7.9	2.80	2.80	2.54	2.24	1.96	1.73	1.52	1.33	1.17	1.03
8.0	2.43	2.43	2.21	1.94	1.71	1.50	1.32	1.16	1.02	0.90
8.1	2.10	2.10	1.91	1.68	1.47	1.29	1.14	1.00	0.88	0.77
					64					

8.2	1.79	1.79	1.63	1.43	1.26	1.11	0.97	0.86	0.75	0.66
8.3	1.52	1.52	1.39	1.22	1.07	0.94	0.83	0.73	0.64	0.56
8.4	1.29	1.29	1.17	1.03	0.91	0.80	0.70	0.62	0.54	0.48
8.5	1.09	1.09	0.99	0.87	0.76	0.67	0.59	0.52	0.46	0.40
8.6	0.92	0.92	0.84	0.73	0.65	0.57	0.50	0.44	0.39	0.34
8.7	0.78	0.78	0.71	0.62	0.55	0.48	0.42	0.37	0.33	0.29
8.8	0.66	0.66	0.60	0.53	0.46	0.41	0.36	0.32	0.28	0.24
8.9	0.56	0.56	0.51	0.45	0.40	0.35	0.31	0.27	0.24	0.21
9.0	0.49	0.49	0.44	0.39	0.34	0.30	0.26	0.23	0.20	0.18

TABLE 30-DAY AVERAGE (CHRONIC) CONCENTRATION OF TOTAL AMMONIA AS N (MG/1)

Fish Early Life Stages Absent Temperature, C

Temperature, C									
PH 6.5 6.6 6.7 6.8 6.9 7.1 7.2 7.3 7.4 7.5 7.7 8.1 8.2 8.4 8.5 8.7 8.8 8.9 9.0	0-7 10.8 10.7 10.5 10.2 9.93 9.60 9.20 8.75 8.24 7.69 6.46 5.81 4.54 3.95 3.41 2.47 2.09 1.77 1.49 1.07 0.917 0.790	8 10.1 10.1 9.99 9.81 9.00 8.63 8.20 7.73 7.21 6.64 6.05 5.45 4.84 4.26 3.70 3.19 2.73 2.32 1.96 1.18 1.01 0.860 0.740	9 9.51 9.37 9.20 8.98 8.73 8.43 8.09 7.69 7.25 6.76 6.23 5.67 5.11 4.54 3.99 3.47 2.99 2.56 2.18 1.84 1.55 1.31 1.11 0.944 0.806	10 8.92 9.37 8.62 8.42 8.19 7.91 7.58 7.21 6.79 6.33 5.84 5.32 4.79 4.26 3.74 3.26 2.81 2.40 2.04 1.73 1.46 1.23 1.04 0.885 0.758	11 8.36 8.79 8.08 7.90 7.68 7.41 7.11 6.76 6.37 5.94 5.48 4.99 4.49 3.99 3.51 3.05 2.63 2.25 1.91 1.62 1.37 1.15 0.976 0.829 0.709	12 7.84 8.24 7.58 7.40 6.95 6.67 6.34 5.97 5.57 5.13 4.68 4.21 3.74 3.29 2.86 2.47 2.11 1.79 1.52 1.28 0.915 0.978 0.978	0.729 0.623	0.684 0.584	0.707 0.601 0.513
pH 6.5 6.6 6.7 6.8 6.9 7.0	18 5.33 5.25 5.15 5.03 4.89 4.72 4.53	20 4.68 4.61 4.52 4.42 4.30 4.15 3.98	22 4.12 4.05 3.98 3.89 3.78 3.65 3.50	24 3.62 3.56 3.50 3.42 3.32 3.21 3.08	26 3.18 3.13 3.07 3.00 2.92 2.82 2.70	28 2.80 2.75 2.70 2.64 2.57 2.48 2.38	30 2.46 2.42 2.37 2.32 2.25 2.18 2.09	0.303	0.442

```
7.2
               4.41 3.78 3.33 2.92 2.57 2.26 1.99

      4.41
      3.76
      3.33
      2.92
      2.57
      2.26
      1.99

      4.06
      3.57
      3.13
      2.76
      2.42
      2.13
      1.87

      3.78
      3.32
      2.92
      2.57
      2.26
      1.98
      1.74

      3.49
      3.06
      2.69
      2.37
      2.08
      1.83
      1.61

      3.18
      2.79
      2.45
      2.16
      1.90
      1.67
      1.47

      2.86
      2.51
      2.21
      1.94
      1.71
      1.50
      1.32

      2.54
      2.23
      1.96
      1.73
      1.52
      1.33
      1.17

7.3
7.4
7.5
7.6
7.7
7.8
               2.24 1.96 1.73 1.52 1.33 1.17 1.03
7.9
              0.94 1.71 1.50 1.32 1.16 1.02 0.897
8.0
              0.68 1.47 1.29 1.14 1.00 0.879 0.733
8.1
8.2
             0.43 1.26 1.11 0.073 0.855 0.752 0.661
             0.22 1.07 0.941 0.827 0.727 0.639 0.562 0.03 0.906 0.796 0.700 0.615 0.541 0.475
8.3
8.4
8.5
             0.870 0.765 0.672 0.591 0.520 0.457 0.401
               0.735 0.646 0.568 0.499 0.439 0.396 0.339
8.6
                0.622 0.547 0.480 0.422 0.371 0.326 0.287
8.7
               0.528 0.464 0.408 0.359 0.315 0.277 0.244
8.8
8.9
               0.451 0.397 0.349 0.306 0.269 0.237 0.208
9.0
               0.389 0.342 0.300 0.264 0.232 0.204 0.179
```

TABLE 2.14.3a

EQUATIONS TO CONVERT TOTAL RECOVERABLE METALS STANDARD WITH HARDNESS (1) DEPENDENCE TO DISSOLVED METALS STANDARD BY APPLICATION OF A CONVERSION FACTOR (CF).

4-Day Average (Chronic) Parameter Concentration (UG/L) CF * e (0.7409 (ln(hardness)) -4.719 CADMIUM CF = 1.101672 - ln(hardness) (0.041838)CHROMIUM III CF * e (0.8190(ln(hardness)) + 0.6848 CF = 0.860CF * e (0.8545(ln(hardness)) -1.702) COPPER CF = 0.960CF * e^{(1.273(ln(hardness))-4.705)} LEAD CF = 1.46203 - ln(hardness)(0.145712)CF * e^{(0.8460(ln(hardness))+0.0584)} NICKEL CF = 0.997SILVER N/A

Cf * e^{(0.8473(ln(hardness))+0.884)}

ZINC

TABLE 2.14.3b

CF = 0.986

EQUATIONS TO CONVERT TOTAL RECOVERABLE METALS STANDARD WITH HARDNESS (1) DEPENDENCE TO DISSOLVED METALS STANDARD BY APPLICATION OF A CONVERSION FACTOR (CF).

 $\begin{array}{ccc} \text{Parameter} & \text{1-Hour Average (Acute)} \\ & \text{Concentration (UG/L)} \end{array}$

CF = 1.136672 - ln(hardness)(0.041838)

CHROMIUM (III) CF * $e^{(0.8190 (ln(hardness)) + 3.7256)}$ CF = 0.316

LEAD CF * e^{(1.273 (ln (hardness))-1.460)}

CF = 1.46203 - ln(hardness)(0.145712)

NICKEL CF * $e^{(0.8460 (ln(hardness)) +2.255}$

CF = 0.998

CF = 0.85

ZINC CF * $e^{(0.8473(ln(hardness)) + 0.884}$

CF = 0.978

FOOTNOTE:

(1) Hardness as mg/l CaCO₃.

TABLE 2.14.4 EQUATIONS FOR PENTACHLOROPHENOL (pH DEPENDENT)

4-Day Average (Chronic) Concentration (UG/L)

1-Hour Average (Acute) Concentration (UG/L)

e^{(1.005(pH))-5.134}

e (1.005 (pH))-4.869

TABLE 2.14.5

SITE SPECIFIC CRITERIA FOR

DISSOLVED OXYGEN FOR JORDAN RIVER, SURPLUS CANAL, AND STATE CANAL (SEE SECTION 2.13)

DISSOLVED OXYGEN:

May-July

7-day average 5.5 mg/l 30-day average 5.5 mg/l Instantaneous minimum 4.5 mg/l

August-April

TABLE 2.14.6 LIST OF HUMAN HEALTH CRITERIA (CONSUMPTION)

Cher	mical Parameter	Water and Organism
	//T \	Organism Only
	(ug/L)	(ug/L)
7	Class 1C	Class 3A,3B,3C,3D
Antimony	5.6	640
Arsenic	A	A
Beryllium	С	С
Cadmium	C	С
Chromium III	C	С
Chromium VI	C	С
Copper	1,300	
Lead	С	С
Mercury	A	A
Nickel	100 MCL	4,600
Selenium	A	4,200
Silver		
Thallium	0.24	0.47
Zinc	7,400	26,000
Cyanide	140	140
Asbestos	7 million	
	Fibers/L	
2,3,7,8-TCDD Dioxin	5.0 E -9 B	5.1 E-9 B
Agroloin	190 6.0	290 9.0
Acrylonitrile	0.051 B	0.25 B
Alachlor	2.0	
Atrazine	3.0	
Benzene	2.2 B	51 B
Bromoform	4.3 B	140 B
Carbofuran	40	110 2
Carbon Tetrachloride	0.23 B	1.6 B
Chlorobenzene	100 MCL	1,600
Chlorodibromomethane	0.40 B	13 B
Chloroethane	0.10 B	13 B
2-Chloroethylvinyl Ether	r	
Chloroform	5.7 B	470 B
Dalapon	200	470 B
Di(2ethylhexl)adipate	400	
Dibromochloropropane	0.2	
Dichlorobromomethane	0.55 B	17 B
1,1-Dichloroethane	0.55 В	I/ B
	0 20 D	27 D
1,2-Dichloroethane	0.38 B	37 B
1,1-Dichloroethylene	7 MCL ,2) 70	7,100
Dichloroethylene (cis-1,		
Dinoseb	7.0	
Diquat	20	15 D
1,2-Dichloropropane	0.50 B	15 B
	68	

Comment [C25]: #8 on the 04202011 2011 List

1,3-Dichloropropene	0.34	21
Endothall	100	
Ethylbenzene	530	2,100
Ethylene Dibromide	0.05	
Glyphosate	700	
Haloacetic acids	60 E	
Methyl Bromide	47	1,500
Methyl Chloride	F	F
Methylene Chloride	4.6 B	590 B
Ocamyl (vidate)	200	
Picloram	500	
Simazine	4	
Styrene	100	
1,1,2,2-Tetrachloroethane	0.17 B	4.0 B
Tetrachloroethylene	0.69 B	3.3 B
Toluene	1,000	15,000
1,2 -Trans-Dichloroethylene	100 MCL	10,000
1,1,1-Trichloroethane	200 MCL	F
1,1,2-Trichloroethane	0.59 B	16 B
Trichloroethylene	2.5 B	30 B
Vinyl Chloride	0.025	2.4
Xylenes	10,000	
2-Chlorophenol	81	150
2,4-Dichlorophenol	77	2902,4-
Dimethylphenol	380	850
2-Methyl-4,6-Dinitrophenol	13.0	280
2,4-Dinitrophenol	69	5,300
	* *	-,
2-Nitrophenol		
2-Nitrophenol		
4-Nitrophenol		
4-Nitrophenol 3-Methyl-4-Chlorophenol	0.27 B	3.0 B
4-Nitrophenol 3-Methyl-4-Chlorophenol Penetachlorophenol	0.27 B -10.400	3.0 B 1.700.000 860.000
4-Nitrophenol 3-Methyl-4-Chlorophenol Penetachlorophenol Phenol 21000	<u>-10,400</u>	1,700,000 <u>860,000</u>
4-Nitrophenol 3-Methyl-4-Chlorophenol Penetachlorophenol Phenol 21000 2,4,6-Trichlorophenol	1.4 B	1,700,000 860,000 2.4 B
4-Nitrophenol 3-Methyl-4-Chlorophenol Penetachlorophenol Phenol 21000 2,4,6-Trichlorophenol Acenaphthene	<u>-10,400</u>	1,700,000 <u>860,000</u>
4-Nitrophenol 3-Methyl-4-Chlorophenol Penetachlorophenol Phenol 2,4,6-Trichlorophenol Acenaphthene Acenaphthylene	10,400 1.4 B 670	1,700,000 860,000 2.4 B 990
4-Nitrophenol 3-Methyl-4-Chlorophenol Penetachlorophenol Phenol 2,4,6-Trichlorophenol Acenaphthene Acenaphthylene Anthracene	10,400 1.4 B 670 8,300	1,700,000 860,000 2.4 B 990 40,000
4-Nitrophenol 3-Methyl-4-Chlorophenol Penetachlorophenol Phenol 2,4,6-Trichlorophenol Acenaphthene Acenaphthylene Anthracene Benzidine	1.4 B 670 8,300 0.000086 B	1,700,000 860,000 2.4 B 990 40,000 0.00020 B
4-Nitrophenol 3-Methyl-4-Chlorophenol Penetachlorophenol Phenol 2,4,6-Trichlorophenol Acenaphthene Acenaphthylene Anthracene Benzidine BenzoaAnthracene	1.4 B 670 8,300 0.000086 B 0.0038 B	1,700,000 860,000 2.4 B 990 40,000 0.00020 B 0.018 B
4-Nitrophenol 3-Methyl-4-Chlorophenol Penetachlorophenol Phenol 2,4,6-Trichlorophenol Acenaphthene Acenaphthylene Anthracene Benzidine BenzoaAnthracene BenzoaPyrene	1.4 B 670 8,300 0.000086 B 0.0038 B 0.0038 B	1,700,000 860,000 2.4 B 990 40,000 0.00020 B 0.018 B 0.018 B
4-Nitrophenol 3-Methyl-4-Chlorophenol Penetachlorophenol Phenol 2,4,6-Trichlorophenol Acenaphthene Acenaphthylene Anthracene Benzidine BenzoaAnthracene BenzoaPyrene BenzobFluoranthene	1.4 B 670 8,300 0.000086 B 0.0038 B	1,700,000 860,000 2.4 B 990 40,000 0.00020 B 0.018 B
4-Nitrophenol 3-Methyl-4-Chlorophenol Penetachlorophenol Phenol 2,4,6-Trichlorophenol Acenaphthene Acenaphthylene Anthracene Benzidine BenzoaAnthracene BenzoaPyrene BenzobFluoranthene BenzoghiPerylene	1.4 B 670 8,300 0.000086 B 0.0038 B 0.0038 B 0.0038 B	1,700,000 860,000 2.4 B 990 40,000 0.00020 B 0.018 B 0.018 B 0.018 B
4-Nitrophenol 3-Methyl-4-Chlorophenol Penetachlorophenol Phenol 2,4,6-Trichlorophenol Acenaphthene Acenaphthylene Anthracene Benzidine BenzoaAnthracene BenzoaPyrene BenzobFluoranthene BenzoghiPerylene BenzokFluoranthene	1.4 B 670 8,300 0.000086 B 0.0038 B 0.0038 B	1,700,000 860,000 2.4 B 990 40,000 0.00020 B 0.018 B 0.018 B
4-Nitrophenol 3-Methyl-4-Chlorophenol Penetachlorophenol Phenol 2,4,6-Trichlorophenol Acenaphthene Acenaphthylene Anthracene Benzidine BenzoaAnthracene BenzoaPyrene BenzobFluoranthene BenzoghiPerylene BenzokFluoranthene Bis2-ChloroethoxyMethane	1.4 B 670 8,300 0.000086 B 0.0038 B 0.0038 B 0.0038 B	1,700,000 860,000 2.4 B 990 40,000 0.00020 B 0.018 B 0.018 B 0.018 B
4-Nitrophenol 3-Methyl-4-Chlorophenol Penetachlorophenol Phenol 2,4,6-Trichlorophenol Acenaphthene Acenaphthylene Anthracene Benzidine BenzoaAnthracene BenzoaPyrene BenzobFluoranthene BenzoghiPerylene BenzokFluoranthene Bis2-ChloroethoxyMethane Bis2-ChloroethylEther	1.4 B 670 8,300 0.000086 B 0.0038 B 0.0038 B 0.0038 B	1,700,000 860,000 2.4 B 990 40,000 0.00020 B 0.018 B 0.018 B 0.018 B 0.018 B
4-Nitrophenol 3-Methyl-4-Chlorophenol Penetachlorophenol Phenol 2,4,6-Trichlorophenol Acenaphthene Acenaphthylene Anthracene Benzidine BenzoaAnthracene BenzoaPyrene BenzobFluoranthene BenzoghiPerylene BenzokFluoranthene Bis2-ChloroethoxyMethane Bis2-ChloroethylEther Bis2-Chloroisopropy1Ether	1.4 B 670 8,300 0.000086 B 0.0038 B 0.0038 B 0.0038 B 0.0038 B	1,700,000 860,000 2.4 B 990 40,000 0.00020 B 0.018 B 0.018 B 0.018 B 0.018 B 0.018 B
4-Nitrophenol 3-Methyl-4-Chlorophenol Penetachlorophenol Phenol 2,4,6-Trichlorophenol Acenaphthene Acenaphthylene Anthracene Benzidine BenzoaAnthracene BenzoaPyrene BenzobFluoranthene BenzoghiPerylene BenzokFluoranthene Bis2-ChloroethoxyMethane Bis2-ChloroethylEther Bis2-EthylhexylPhthalate	1.4 B 670 8,300 0.000086 B 0.0038 B 0.0038 B 0.0038 B	1,700,000 860,000 2.4 B 990 40,000 0.00020 B 0.018 B 0.018 B 0.018 B 0.018 B
4-Nitrophenol 3-Methyl-4-Chlorophenol Penetachlorophenol Phenol 2,4,6-Trichlorophenol Acenaphthene Acenaphthylene Anthracene Benzidine BenzoaAnthracene BenzoaPyrene BenzobFluoranthene BenzoshiPerylene BenzokFluoranthene Bis2-ChloroethoxyMethane Bis2-ChloroethylEther Bis2-Chloroisopropy1Ether Bis2-EthylhexylPhthalate 4-Bromophenyl Phenyl Ether	1.4 B 670 8,300 0.000086 B 0.0038 B 0.0038 B 0.0038 B 0.0038 B	1,700,000 860,000 2.4 B 990 40,000 0.00020 B 0.018 B 0.018 B 0.018 B 0.018 B 0.018 B 0.2018 B
4-Nitrophenol 3-Methyl-4-Chlorophenol Penetachlorophenol Phenol 2,4,6-Trichlorophenol Acenaphthene Acenaphthylene Anthracene Benzidine BenzoaAnthracene BenzoaPyrene BenzobFluoranthene BenzoshiPerylene BenzokFluoranthene Bis2-ChloroethoxyMethane Bis2-ChloroethylEther Bis2-Chloroisopropy1Ether Bis2-EthylhexylPhthalate 4-Bromophenyl Phenyl Ether Butylbenzyl Phthalate	1.4 B 670 8,300 0.000086 B 0.0038 B 0.0038 B 0.0038 B 0.0038 B 0.0030 B 1,400 1.2 B	1,700,000 860,000 2.4 B 990 40,000 0.00020 B 0.018 B 0.018 B 0.018 B 0.018 B 0.018 B 1,900
4-Nitrophenol 3-Methyl-4-Chlorophenol Penetachlorophenol Phenol 2,4,6-Trichlorophenol Acenaphthene Acenaphthylene Anthracene Benzidine BenzoaAnthracene BenzoaPyrene BenzobFluoranthene BenzoshiPerylene BenzokFluoranthene Bis2-ChloroethoxyMethane Bis2-ChloroethylEther Bis2-Chloroisopropy1Ether Bis2-EthylhexylPhthalate 4-Bromophenyl Phenyl Ether Butylbenzyl Phthalate 2-Chloronaphthalene	1.4 B 670 8,300 0.000086 B 0.0038 B 0.0038 B 0.0038 B 0.0038 B	1,700,000 860,000 2.4 B 990 40,000 0.00020 B 0.018 B 0.018 B 0.018 B 0.018 B 0.018 B 0.2018 B
4-Nitrophenol 3-Methyl-4-Chlorophenol Penetachlorophenol Phenol 2,4,6-Trichlorophenol Acenaphthene Acenaphthylene Anthracene Benzidine BenzoaAnthracene BenzoaPyrene BenzobFluoranthene BenzoshiPerylene BenzokFluoranthene Bis2-ChloroethoxyMethane Bis2-ChloroethylEther Bis2-Chloroisopropy1Ether Bis2-EthylhexylPhthalate 4-Bromophenyl Phenyl Ether Butylbenzyl Phthalate 2-Chloronaphthalene 4-Chlorophenyl Phenyl Ether	1.4 B 670 8,300 0.000086 B 0.0038 B 0.0038 B 0.0038 B 0.0038 B 0.030 B 1,400 1.2 B 1,500 1,000	1,700,000 860,000 2.4 B 990 40,000 0.00020 B 0.018 B 0.018 B 0.018 B 0.018 B 0.018 B 1,900 1,600
4-Nitrophenol 3-Methyl-4-Chlorophenol Penetachlorophenol Phenol 2,4,6-Trichlorophenol Acenaphthene Acenaphthylene Anthracene Benzidine BenzoaAnthracene BenzoaPyrene BenzobFluoranthene BenzoshiPerylene BenzokFluoranthene Bis2-ChloroethoxyMethane Bis2-ChloroethoxyMethane Bis2-ChloroisopropylEther Bis2-EthylhexylPhthalate 4-Bromophenyl Phenyl Ether Butylbenzyl Phthalate 2-Chloronaphthalene 4-Chlorophenyl Phenyl Ether Chrysene	1.4 B 670 8,300 0.000086 B 0.0038 B 0.0038 B 0.0038 B 0.0038 B 0.030 B 1,400 1.2 B 1,500 1,000 0.0038 B	1,700,000 860,000 2.4 B 990 40,000 0.00020 B 0.018 B 0.018 B 0.018 B 0.018 B 0.018 B 1,900 1,600 0.018 B
4-Nitrophenol 3-Methyl-4-Chlorophenol Penetachlorophenol Phenol 2,4,6-Trichlorophenol Acenaphthene Acenaphthylene Anthracene Benzidine BenzoaAnthracene BenzoaPyrene BenzobFluoranthene BenzoshiPerylene BenzokFluoranthene Bis2-ChloroethoxyMethane Bis2-ChloroethoxyMethane Bis2-ChloroisopropylEther Bis2-EthylhexylPhthalate 4-Bromophenyl Phenyl Ether Butylbenzyl Phthalate 2-Chloronaphthalene 4-Chlorophenyl Phenyl Ether Chrysene Dibenzoa,hAnthracene	1.4 B 670 8,300 0.000086 B 0.0038 B 0.0038 B 0.0038 B 0.0038 B 0.030 B 1,400 1.2 B 1,500 1,000 0.0038 B 0.0038 B	1,700,000 2.4 B 990 40,000 0.00020 B 0.018 B
4-Nitrophenol 3-Methyl-4-Chlorophenol Penetachlorophenol Phenol 2,4,6-Trichlorophenol Acenaphthene Acenaphthylene Anthracene Benzidine BenzoaAnthracene BenzoaPyrene BenzobFluoranthene BenzoshiPerylene BenzokFluoranthene Bis2-ChloroethoxyMethane Bis2-ChloroethoxyMethane Bis2-ChloroisopropylEther Bis2-EthylhexylPhthalate 4-Bromophenyl Phenyl Ether Butylbenzyl Phthalate 2-Chloronaphthalene 4-Chlorophenyl Phenyl Ether Chrysene	1.4 B 670 8,300 0.000086 B 0.0038 B 0.0038 B 0.0038 B 0.0038 B 0.030 B 1,400 1.2 B 1,500 1,000 0.0038 B	1,700,000 860,000 2.4 B 990 40,000 0.00020 B 0.018 B 0.018 B 0.018 B 0.018 B 0.018 B 1,900 1,600 0.018 B

Comment [C26]: #8 on the 04202011 2011 List

1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate	320 63 0.021 B 17,000		960 190 0.028 B 44,000
Dimethyl Phthalate Di-n-Butyl Phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-Octyl Phthalate	270,000 2,000 0.11 B		1,100,000 4,500 3.4 B
1,2-Diphenylhydrazine Fluoranthene Fluorene	0.036 B 130 1,100	140	0.20 B 5,300
Hexachlorobenzene	0.00028 B		0.00029 B
Hexachlorobutedine	0.44 B		18 B
Hexachloroethane	1.4 B		3.3 B
Hexachlorocyclopentadiene Ideno 1,2,3-cdPyrene	40 0.0038 B		1,100 0.018 B
Isophorone	35 B		960 B
Naphthalene			
Nitrobenzene	17		690
N-Nitrosodimethylamine	0.00069 B		3.0 B
N-Nitrosodi-n-Propylamine N-Nitrosodiphenylamine	0.005 B 3.3 B		0.51 B 6.0 B
Phenanthrene	3.3 B		0.0 В
Pyrene	830		4,000
1,2,4-Trichlorobenzene	35		70
Aldrin	0.000049 B		0.000050 B
alpha-BHC beta-BHC	0.0026 B 0.0091 B		0.0049 B 0.017 B
gamma-BHC (Lindane)	0.2 MCL		1.8
delta-BHC			
Chlordane	0.00080 B		0.00081 B
4,4-DDT	0.00022 B		0.00022 B
4,4-DDE 4,4-DDD	0.00022 B 0.00031 B		0.00022 B 0.00031 B
Dieldrin	0.000052 B		0.000054 B
alpha-Endosulfan	62		89
beta-Endosulfan	62		89
Endosulfan Sulfate	62		89
Endrin Endrin Aldehyde	0.059 0.29		0.060 0.30
Heptachlor	0.000079 B		0.000079 B
Heptachlor Epoxide	0.000039 B		0.000039 B
Polychlorinated Biphenyls	0.000064 B,D		0.000064 B,D
PCB's	0 00000 B		0 00000 B
Toxaphene	0.00028 B		0.00028 B
Footnotes:			

- A. See Table 2.14.2

 B. Based on carcinogenicity of 10-6 risk.

 C. EPA has not calculated a human criterion for this contaminant. However, permit authorities should address this contaminant in NPDES permit actions using the State's existing

narrative criteria for toxics
D. This standard applies to total PCBs.

KEY: water pollution, water quality standards
Date of Enactment or Last Substantive Amendment: April 1, 2010
Notice of Continuation: October 2, 2007
Authorizing, and Implemented or Interpreted Law: 19-5